Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T19:13:56.846Z Has data issue: false hasContentIssue false

Amalgamation properties in the class of MS-algebras

Published online by Cambridge University Press:  14 November 2011

T. S. Blyth
Affiliation:
Mathematical Institute, University of St Andrews
J. C. Varlet
Affiliation:
Institut de Mathématique, Université de Liège, B-4000 Liège, Belgium

Synopsis

We determine which subvarieties of the class of MS-algebras enjoy the amalgamation property, the embedding property, the strong amalgamation property, or the special amalgamation property.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Baldwin, J. T.. A sufficient condition for a variety to have the amalgamation property. Colloq. Math. 28 (1973), 181183.CrossRefGoogle Scholar
2Blyth, T. S. and Varlet, J. C.. On a common abstraction of de Morgan algebras and Stone algebras. Proc. Roy. Soc. Edinburgh Sect A 94 (1983), 301308.CrossRefGoogle Scholar
3Blyth, T. S. and Varlet, J. C.. Subvarieties of the class of MS-algebras. Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), 157169.CrossRefGoogle Scholar
4Blyth, T. S. and Varlet, J. C.. Fixed points in MS-algebras. Bull. Soc. Roy. Sci. Liège 53 (1984), 38.Google Scholar
5Cornish, W. H., Antimorphic action (Flinders University, 1983).Google Scholar
6Grätzer, G. and Lakser, H.. The structure of pseudo-complemented distributive lattices II. Congruence extension and amalgamation. Trans. Amer. Math. Soc. 156 (1971), 343358.Google Scholar
7Pigozzi, D., Amalgamation, congruence extension and interpolation properties in algebras. Algebra Univ. 1 (1971), 269349.CrossRefGoogle Scholar