Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T09:29:19.406Z Has data issue: false hasContentIssue false

XV.—Theorems on the Convergence and Asymptotic Validity of Abel's Series*

Published online by Cambridge University Press:  14 February 2012

A. J. Macintyre
Affiliation:
University of Aberdeen
Sheila Scott Macintyre
Affiliation:
University of Aberdeen

Synopsis

In this paper we discuss the Abel series for a function F(z) which is regular in an angle | arg z | ≤ α and at the origin. We investigate conditions under which the series converges and conditions under which its sum is asymptotically equivalent to the function F(z) in the half-plane R(z) > 0.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES TO LITERATURE

Abel, N. H., 1839. Oeuvres Complètes, Christiania.Google Scholar
Buck, R. C., 1948. “Interpolation Series”, Trane. Amer. Math., LXIV (2), 283298.CrossRefGoogle Scholar
Gelfond, A., 1938. “Interpolation et unicité des fonctions entiéres”, Rec. Math. (Mat. Sbornik), N.S., XLVI, 115147.Google Scholar
Gontchaboff, W., 1935. “Sur la convergence de la série d'Abel”, Rec Math. (Mat. Sbornik), N.S., xlii, 473483.Google Scholar
Halphen, G. H., 1881. “Sur une série d'Abel”, Bull, de la Soc. Math., x, 18811882, 67.Google Scholar
Macintyre, A. J., 1939. “Laplace's Transformation and Integral Functions”, Proc. London Math. Soc, (2), XLV, 120.CrossRefGoogle Scholar
Pflüger, A., 19351936. “Über eine Interpretation gewisser Konvergenz-und Fortsetzungseigenschaften Dirichletscher Reihen”, Comm. Math. Helv., VII (2), 89129.CrossRefGoogle Scholar
Phragmèn, E., and Lindelöf, E., 1908. “Sur une extension d'un principe classique de l'analyse”, Acta Math., xxxi, 381406.CrossRefGoogle Scholar
Polya, G., 1929. “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Math. Zeits., xxix, 549640.CrossRefGoogle Scholar
Polya, G., and Szegö, G., 1945 edition, Aufgaben und Lehrsätze, Vol. I, New York.Google Scholar
Rabinovic, Yu. L., 1948. “Inversion Formulae for two kinds of Laplace Transform”, Doklady Akad. Nauk. S.S.S.B. (N.S.), LX, 969972. (Russian.)Google Scholar
Schmidli, S., 1942. “Über gewisse Interpolationsreihen ”, Thesis, Zurich.Google Scholar