Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T20:45:59.283Z Has data issue: false hasContentIssue false

XVIII.—The Solution of Equations in a Lattice.

Published online by Cambridge University Press:  14 February 2012

R. L. Goodstein
Affiliation:
Department of Mathematics, University of Leicester.

Synopsis

Necessary and sufficient conditions are given for the existence of solutions of equations, in any number of variables, on distributive lattices with least and greatest elements, together with an algorithm for determining a solution when these conditions are satisfied.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Carvallo, M., 1965. Principes et applications de l'analyse Booléenne. Paris: Gauthier-Villars.Google Scholar
Curry, H. B., 1952. Leçons de Logique Algebrique. Paris: Gauthier-Villars.Google Scholar
Goodstein, R. L., 1965. Boolean Algebra. Oxford: Pergamon.Google Scholar
Goto, M., 1957. General solutions of the Logical Algebraic Equation with many unknowns. U.R.S.I. General Assembly, Boulder.Google Scholar
Löwenheim, L., 1910. “Über die Auflösung von Gleichungen in logischen Gebietkalkül”, Math. Ann., 68, 169207.CrossRefGoogle Scholar
Rudeanu, S., 1965. “Observatii asupra lucrarilor lui motinori Goto privind ecuatiile Booléene”, Stud. Cercet. Mat., 17, 359365.Google Scholar
Rutherford, D. E., 1965. Introduction to Lattice Theory. Edinburgh: Oliver & Boyd.Google Scholar