No CrossRef data available.
Article contents
Weyl's m-coefficient in a B*-algebra
Published online by Cambridge University Press: 14 November 2011
Extract
Some results are given for Weyl's m-coefficient in the algebra B = C(K). Included are a discussion of a theorem of Hille, a generalisation of Weyl's L.P./L.C. classification, and an example.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 82 , Issue 3-4 , 1979 , pp. 241 - 250
- Copyright
- Copyright © Royal Society of Edinburgh 1979
References
1Coddington, E. A. and Levinson, N.. Theory of Ordinary Differential Equations (New York: McGraw-Hill, 1955).Google Scholar
2Hille, E.. Lectures on Ordinary Differential Equations (London: Addison-Wesley, 1969).Google Scholar
3Moodie, J.. Some Problems in the Theory of the Coefficient of Weyl for Linear Equations in Banach Spaces (Dundee Univ. Ph.D. Thesis, 1976).Google Scholar
4Moodie, J.. Some modules over a B*-algebra. Quaestiones Mathematicae 1 (1976), 181–196.CrossRefGoogle Scholar
5Titchmarsh, E. C.. Eigenfunction Expansions Associated with Second-Order Differential Equations (London: O.U.P., 1962).CrossRefGoogle Scholar
6Weyl, H.. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann. 68 (1910), 220–269.CrossRefGoogle Scholar