Article contents
Uniformly monotone dynamical systems
Published online by Cambridge University Press: 14 November 2011
Synopsis
We present a geometric approach for systems of ordinary differential equations which generate an order preserving flow. One of our main goals is to describe qualitatively the asymptotic behaviour of trajectories of dynamical systems enjoying a uniformly monotone principle.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 123 , Issue 1 , 1993 , pp. 59 - 74
- Copyright
- Copyright © Royal Society of Edinburgh 1993
References
1Smith, H. L.. Systems of ordinary differential equations which generates an order preserving flow. A survey of results. SIAM Review 30 (1988), 87–113.CrossRefGoogle Scholar
2Müller, M.. Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen. Math. Zeit. 26 (1926), 319–355.Google Scholar
3Kamke, E.. Zur Theorie der Systeme gewöhnlicher Differentialgleichungen II. Acta Math. 58 (1932), 57–85.CrossRefGoogle Scholar
4Hirsch, M. W.. The dynamical systems approach to differential equations. Bull. Amer. Math. Soc. 11 (1984), 1–64.CrossRefGoogle Scholar
5Hirsch, M. W.. Systems of differential equations that are competitive or cooperative II, Convergence almost everywhere. SIAM. J. Math. Anal. 16 (1985), 423–439.CrossRefGoogle Scholar
6Hirsch, M. W.. Stability and convergence in strongly monotone systems. J. Reine Angew. Math. 383 (1988), 1–53.Google Scholar
7Hirsch, M. W.. Systems of differential equations which are competitive or cooperative, III. Competing species. Nonlinearity 1 (1988), 51–71.CrossRefGoogle Scholar
8Nadirashvili, N. S.. Les systèmes dynamiques uniformément monotones. C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 739–741.Google Scholar
9Nadirashvili, N. S.. On the dynamics of nonlinear parabolic equations. Dokl. Acad. Nauk USSR 309 (1989) (N6); Soviet Math. Dokl. 40 (1990) (N3), 636–639.Google Scholar
10Landis, E. M. and Nadirashvili, N. S.. Positive solutions of second order elliptic equations in unbounded domains. Mat. Sb. 126 (1985) (1); Math. USSR Sbornik 54 (1986) (1), 129–134.Google Scholar
- 1
- Cited by