Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T20:42:17.453Z Has data issue: false hasContentIssue false

Symmetric-like Riemannian manifolds and geodesic symmetries

Published online by Cambridge University Press:  14 November 2011

Jürgen Berndt
Affiliation:
Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany
Friedbert Prüfer
Affiliation:
Fachbereich Mathematik/Informatik, Universität Leipzig, Augustusplatz 10, 04109 Leipzig, Germany
Lieven Vanhecke
Affiliation:
Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Leuven, Belgium

Abstract

We treat several classes of Riemannian manifolds whose shape operators of geodesic spheres or Jacobi operators share some properties with the ones on symmetric spaces.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Berndt, J.. Real hypersurfaces with constant principal curvatures in complex space forms. In Geometry and Topology of Submanifolds II, pp. 1019 (Singapore: World Scientific, 1990).Google Scholar
2Berndt, J. and Vanhecke, L.. Two natural generalizations of locally symmetric spaces. Differential Geom. Appl. 2 (1992), 5780.CrossRefGoogle Scholar
3Berndt, J. and Vanhecke, L.. Geodesic spheres and generalizations of symmetric spaces. Boll. Un. Mat. ltd. A (7), 7 (1993), 125134.Google Scholar
4Berndt, J. and Vanhecke, L.. Geodesic sprays and and -spaces. Rend. Sent. Mat. Univ. Politec. Torino 50 (1992), 343358.Google Scholar
5Blair, D. E.. Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics 509 (Berlin: Springer, 1976).CrossRefGoogle Scholar
6Blair, D. E. and Vanhecke, L.. Symmetries and φ-symmetric spaces. Tohoku Math. J. 39 (1987), 373383.CrossRefGoogle Scholar
7Bueken, P. and Vanhecke, L.. Geometry and symmetry on Sasakian manifolds. Tsukuba J. Math. 12 (1988), 403422.Google Scholar
8Cho, J. T.. Natural generalizations of locally symmetric spaces. Indian J. Pure Appl. Math. 24 (1993), 231240.Google Scholar
9Kato, T.. Perturbation Theory for Linear Operators (Berlin: Springer, 1966).Google Scholar
10Kowalski, O. and Vanhecke, L.. Four-dimensional naturally reductive homogeneous spaces. Rend. Sem. Mat. Univ. Politec. Torino (Fascicolo Speciale, Settembre 1983), 222232.Google Scholar
11Kowalski, O. and Vanhecke, L.. A generalization of a theorem on naturally reductive homogeneous spaces. Proc. Amer. Math. Soc. 91 (1984), 433435.CrossRefGoogle Scholar
12Kowalski, O. and Vanhecke, L.. Two-point functions on Riemannian manifolds. Ann. Global Anal. Geom. 3(1985), 95119.CrossRefGoogle Scholar
13Ledger, A. J. and Vanhecke, L.. Symmetries and locally s-regular manifolds. Ann. Global Anal. Geom. 5(1987), 151160.CrossRefGoogle Scholar
14Selberg, A.. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 4787.Google Scholar
15Szabó, Z. I.. The Lichnerowicz conjecture on harmonic manifolds. J. Differential Geom. 31 (1990), 128.CrossRefGoogle Scholar
16Szabó, Z. I.. A simple topological proof for the symmetry of 2 point homogeneous spaces. Inventiones Math. 106(1991), 6164.CrossRefGoogle Scholar
17Szabó, Z. I.. Spectral theory for operator families on Riemannian manifolds. Proc. Sympos. Pure Math. 54(1993). 615665.CrossRefGoogle Scholar
18Vanhecke, L.. Geometry in normal and tubular neighborhoods. Rend. Sem. Fac. Sci. Univ. Cagliari (Suppl.) 58 (1988), 73176.Google Scholar
19Vanhecke, L. and Willmore, T. J.. Riemannian extensions of D'Atri spaces. Tensor 38 (1982), 154158.Google Scholar
20Vanhecke, L. and Willmore, T. J.. Interaction of tubes and spheres. Math. Ann. 263 (1983), 3142.CrossRefGoogle Scholar