No CrossRef data available.
Article contents
The Stefan problem: continuity of the interfaces for solutions with finite lapnumber
Published online by Cambridge University Press: 14 November 2011
Synopsis
In this paper we consider the Stefan problem with a heating term. We study the continuity of the interfaces between the mush, the liquid and the solid for solutions of finite lapnumber.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 123 , Issue 1 , 1993 , pp. 1 - 26
- Copyright
- Copyright © Royal Society of Edinburgh 1993
References
1Aronson, D. G., Crandall, M. G. and Peletier, L. A.. Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Anal. 6 (1982), 1001–1022.CrossRefGoogle Scholar
2Atthey, D. R.. A finite difference scheme for melting problems. J. lnst. Math. Appl. 13 (1974), 353–366.CrossRefGoogle Scholar
3Bertsch, M. and Klaver, M. H. A.. The Stefan problem with mushy regions: continuity of the interface. Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), 33–52.CrossRefGoogle Scholar
4Bertsch, M., de Mottoni, P. and Peletier, L. A.. Degenerate diffusion and the Stefan problem. Nonlinear Anal. 8 (1984), 1311–1336.CrossRefGoogle Scholar
5Ding, Z. Z. and Ughi, M.. A model problem for the diffusion of oxygen in living tissues. Boll. Un.Mat. Ital. B 7 (1987), 111–127.Google Scholar
6Matano, H.. Nonincrease of the lapnumber of a solution for a one-dimensional semi-linear parabolic equation. Pub. Sci. Univ. Tokyo, Sec. 1A 29 (1982), 401–441.Google Scholar
7Meirmanov, A. M.. An example of nonexistence of a classical solution of the Stefan problem. Soviet Math. Dokl. 23 (1981), 564–566.Google Scholar