Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T01:18:36.172Z Has data issue: false hasContentIssue false

Spectral analysis of perturbed multiplication operators occurring in polymerisation chemistry

Published online by Cambridge University Press:  14 November 2011

Niels Jørgen Kokholm
Affiliation:
Københavns Universitets Matematiske Institut, Universitetsparken 5, DK-2100 København ø, Denmark

Synopsis

We consider a mathematical model for the motion of a marked monomer in a system of reacting polymers at equilibrium. A well-posed integro-differential initial value problem for the probability of finding the marked monomer in a molecule of a given length is formulated. We prove exponential convergence of the probability to a unique equilibrium distribution. A quite complete spectral analysis is carried out for a self adjoint operator, which is a perturbation of a multiplication operator by an integral operator and is related to the generator of the time evolution.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aizenmann, M. and Bak, T. A.. Convergence to equilibrium in a system of reacting polymers. Comm. Math. Phys. 65 (1979), 203230.Google Scholar
2Aguilar, J. and Combes, J. M.. A class of analytic perturbations for one-body Schrödinger Hamiltonians. Comm. Math. Phys. 22 (1971), 269279.Google Scholar
3Bak, T. A. and Binglin, Lu. Polymerisation Reactions in Closed and Open Systems, Lectures in Applied Mathematics 24, pp. 6379 (Providence, RI: American Mathematical Society, 1986).Google Scholar
4Ben-Artzi, M. and Devinatz, A.. The limiting absorption principle for partial differential operators. Mem. Amer. Math. Soc. 66 (1987), 364.Google Scholar
5Coddington, E. A. and Levinson, N.. Theory of Ordinary Differential Equations (New York: McGraw-Hill, 1955).Google Scholar
6Friedrichs, K. O.. On the perturbation of continuous spectra. Comm. Pure Appl. Math. 1 (1948), 361–406.CrossRefGoogle Scholar
7Jensen, A., Mourre, E. and Perry, P.. Multiple commutator estimates and resolvent smoothness in quantum scattering theory. Ann. Inst. H. Poincaré, Sect. A 41 (1984), 207225.Google Scholar
8Kato, T.. Perturbation Theory for Linear Operators (Berlin: Springer, 1966).Google Scholar
9Kato, T.. On finite-dimensional perturbations of self-adjoint operators. J. Math. Soc. Japan 9 (1957), 239–249.Google Scholar
10Kato, T. and Kuroda, S. T.. Theory of simple scattering and eigenfunction expansions. In Functional Analysis and Related Fields, ed. Browder, F., Proceedings Chicago 1968, pp. 99–131 (Berlin: Springer, 1970).Google Scholar
11Kokholm, N. J.. Spectral Analysis of Perturbed Multiplication Operators Occurring in Polymerisation Chemistry (Copenhagen University Mathematics Department Report Series, 1988 No. 3).Google Scholar
12Mathews, J. and Walker, R. L.. Mathematical Methods of Physics (Menlo Park, CA: W. A. Benjamin, 1973).Google Scholar
13Neumann, J. v.. Charakterisierung des Spektrums eines Integraloperators. Actualités Sci. Indust. 229 (1935), 320.Google Scholar
14Pearson, D. B.. A generalisation of the Birman trace theorem. J. Fund. Anal. 28 (1978), 182186.Google Scholar
15Reed, M. and Simon, B.. Methods of Modern Mathematical Physics I-II (New York: Academic Press, 1972).Google Scholar