No CrossRef data available.
Article contents
Some classes of linear bornological spaces
Published online by Cambridge University Press: 14 November 2011
Synopsis
In this paper, two classes of linear bornological spaces are considered, the Kolmogorov spaces and the spaces of type b. These spaces satisfy conditions which are weakenings of the definition of infratopological linear bornological spaces. Various properties of these spaces are proved, and two examples are given, showing the independence of the two conditions introduced.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 90 , Issue 1-2 , 1981 , pp. 155 - 161
- Copyright
- Copyright © Royal Society of Edinburgh 1981
References
1Canela, M. A.. Bornologia equicontinua en un espacio de aplicaciones lineales continuas. Rev. Univ. Santander 2, I (1979), 111–121.Google Scholar
2Canela, M. A.. Linear bornologies and associated topologies. Collect. Math. to appear.Google Scholar
4Hogbe–Nlend, H.. Théorie des bornologies et applications. Lecture Notes in Mathematics 213 (Berlin: Springer, 1971).Google Scholar
5Hogbe–Nlend, H.. Techniques de bornologie en théorie des espaces vectoriels bornologiques et des espaces nucléaires. Summer School in Topological Vector Spaces. Lecture Notes in Mathematics 331 (Berlin: Springer, 1973).Google Scholar
7Husain, T. and Khaleelulla, S. M.. Barrelledness in topological and ordered vector spaces. Lecture Notes in Mathematics 692 (Berlin: Springer, 1978).Google Scholar
8Nel, L. D.. Note on completeness in a pseudotopological linear space. J. London Math. Soc. 81 (1965), 497–498.CrossRefGoogle Scholar
10Waelbroeck, L.. Les espaces à bornés complets. Colloque sur I'Analyse Fonctionelle, pp. 51–55 (Louvain: Librairie Universitaire, 1961).Google Scholar