Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T01:23:08.705Z Has data issue: false hasContentIssue false

Smoothing effect and asymptotic behaviour for the solutions of a nonlinear time dependent system

Published online by Cambridge University Press:  14 November 2011

João-Paulo Dias
Affiliation:
C.M.A.F., 2, Av. Prof. Gama Pinto, 1699 Lisboa-Codex, Portugal
Alain Haraux
Affiliation:
Laboratoire d'Analyse Numérique, Université Paris VI

Synopsis

In this paper we obtain some new results on a nonlinear parabolic system related to the equations of the nematic liquid crystals and introduced in earlier papers by J. P. Dias.

These results mainly concern the existence and uniqueness of generalized solutions for discontinuous data and also their asymptotic behaviour in various cases.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bénilan, Ph. and Brézis, H.. Solutions faibles d'équations d'ávolution dans les espaces de Hilbert. Ann. Inst. Fourier (Grenoble) 22 (1972), 311329.CrossRefGoogle Scholar
2Brézis, H.. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Math. Studies 5 (Amsterdam: North-Holland, 1973).Google Scholar
3Brézis, H. and Goldstein, J. A.. Liouville theorems for some improperly posed problems. In Improperly posed boundary value problems (Carasso-Stone, ed.), pp. 6575 (Bristol: Pitman, 1975).Google Scholar
4Dafermos, C. M.. Asymptotic behavior of solutions of evolution equations. In Nonlinear Evolution Equations (Grandall, M. G. ed.), pp. 103123 (New York: Academic, 1978).Google Scholar
5Dias, J. P.. Un problème aux limites pour un système d'équations non linéaires tridimensionnel Boll. Un. Mat. Ital. 16-B (1979), 2231.Google Scholar
6Dias, J. P.. On the existence of a strong solution for a nonlinear evolution system. Nonlinear Anal, Theory, Meth. Appl. 4 (1980), 139144.CrossRefGoogle Scholar
7Segal, I.. Non-linear semi-groups. Ann. of Math. 78 (1963), 331364.CrossRefGoogle Scholar
8Sobolev, S. L.. On a theorem of functional analysis. Mat. Sb. 4 (1938), 471497.Google Scholar