Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T20:30:27.513Z Has data issue: false hasContentIssue false

Semilinear elliptic and parabolic equations of arbitrary order

Published online by Cambridge University Press:  24 February 2017

Wolf von Wahl
Affiliation:
Institut für Mathematik der Universität Bochum

Extract

In this paper we prove the existence of classical solutions for all t ≧ 0 for parabolic equations u′ + A(t)u = –f(u, ∇y, …, ∇2m–2u) of arbitrary order. 2m is the order of the elliptic principal part. f must satisfy some monotonicity and growth conditions. Moreover, similar results are also valid for semilinear elliptic equations.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Browder, F. E.. Existence theory for boundary value problems for quasilinear elliptic systems with strongly nonlinear lower order terms. Proc. Symp. Pure Math. 17, 269286 (Providence R.I.: Amer. Math. Soc., 1971).Google Scholar
2 Browder, F. E.. On the spectral theory of elliptic partial differential equations I. Math. Ann. 142 (1961), 22130.CrossRefGoogle Scholar
3 Friedman, A.. Partial differential equations (New York: Holt, Rinehart and Winston, 1969).Google Scholar
4 Ladyženskaja, O. A., Solonnikov, V. A. and Ural'ceva, N. N.. Linear and quasilinear equations of parabolic type. Transl. Math. Monographs 23. (Providence, R.I.: Amer. Math. Soc., 1968).Google Scholar
5 Pecher, H. and von Wahl, W.. Klassische Lösungen im Großen semilinearer parabolischer Differentialgleichungen. Math. Z. 145 (1975), 255265.CrossRefGoogle Scholar
6 Tomi, F.. Über elliptische Differentialgleichungen 4. Ordnung mit einer starken Nichtlinearität. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, to appear.Google Scholar
7 von Wahl, W.. Lineare und semilineare parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen. Abh. Math. Sem. Univ. Hamburg, 43 (1975), 234262.CrossRefGoogle Scholar
8 von Wahl, W.. Über semilineare elliptische Gleichungen mit monotoner Nichtlinearität. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1975), 2733.Google Scholar
9 von Wahl, W.. Resolventenabschätzungen für elliptische Differentialoperatoren und semilineare parabolische Differentialgleichungen. Abh. Math. Sem. Univ. Hamburg, to appear.Google Scholar
10 von Wahl, W.. Neue Existenzsätze für reguläre Lösungen semilinearer parabolischer Gleichungen. Abh. Math. Sem. Univ. Hamburg, to appear.Google Scholar
11 von Wahl, W.. Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1972), 231258.Google Scholar
12 von Wahl, W.. Einige Bemerkungen zu meiner Arbeit: ‘Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen’. Manuscripta Math. 11 (1974), 199201.CrossRefGoogle Scholar