Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T02:34:56.364Z Has data issue: false hasContentIssue false

The resolvent problem for the Stokes system in exterior domains: uniqueness and non-regularity in Hölder spaces

Published online by Cambridge University Press:  14 November 2011

Paul Deuring
Affiliation:
TH Darmstadt, Fachbereich 4-Mathematik, D-6100 Darmstadt, Germany

Synopsis

We consider the resolvent problem for the Stokes system in exterior domains, under Dirichlet boundary conditions:

where Ω is a bounded domain in ℝ3. It will be shown that in general there is no constant C > 0 such that for with , div u = 0, and for with . However, if a solution (u, π) of problem (*) exists, it is uniquely determined, provided that u(x) and ∇π(x) decay for large values of |x|. These assertions imply a non-existence result in Hölder spaces.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Agmon, S., Doughs, A. and Nirenberg, L.. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17 (1964), 3592.Google Scholar
2Deuring, P.. The resolvent problem for the Stokes-system in exterior domains: An elementary approach. Math. Methods Appl. Sci. 13 (1990), 335349.Google Scholar
3Deuring, P., von Wahl, W. and Weidemaier, P.. Das lineare Stokes-System in ℝ3. I. Vorlesung über das Innenraumproblem. Bayreuth. Math. Schr. 27 (1988), 1252.Google Scholar
4Kielhofer, H.. Halbgruppen und semilineare Anfangs- Randwertprobleme. Manuscripta Math. 12 (1974), 121152.Google Scholar
5McCracken, M.. The resolvent problem for the Stokes equations on half-space in L*b. SIAM J. Math. Anal. M (1981), 201228.Google Scholar
6Simader, C. G.. On Dirichlet's boundary-value problem, Lecture Notes in Mathematics 268 (Berlin: Springer, 1972).Google Scholar
7Temam, R.. Navier-Stok.es equations (Amsterdam: North-Holland, 1979).Google Scholar
8von Wahl, W.. Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Raumen holderstetiger Funktionen. Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl ll 11 (1972), 231258.Google Scholar
9von Wahl, W.. Einige Bemerkungen zu meiner Arbeit “Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Raumen holderstetiger Funktionen”. Manuscripta Math. 11 (1974), 199201.Google Scholar