Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T11:10:09.674Z Has data issue: false hasContentIssue false

Rank one property for derivatives of functions with bounded variation

Published online by Cambridge University Press:  14 November 2011

Giovanni Alberti
Affiliation:
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Synopsis

In this paper we introduce a new tool in geometric measure theory and then we apply it to study the rank properties of the derivatives of vector functions with bounded variation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alberti, G.. A Lusin Type Theorem for Gradients. J. Fund. Anal. 100 (1991), 110118.CrossRefGoogle Scholar
2Ambrosio, L.. A Compactness Theorem for a Special Class of Functions of Bounded Variation. Boll. Un. Mat. Ital. Ser. 3B 7 (1989), 857881.Google Scholar
3Ambrosio, L.. Variational Problems in SBV. Ada Appl. Math. 17 (1989), 140.Google Scholar
4Ambrosio, L. and Dal Maso, G.. On the Relaxation in BV(Ω, Rm) of Quasiconvex Integrals J. Fund. Anal, (to appear).Google Scholar
5Ambrosio, L. and De Giorgi, E.. Un Nuovo tipo di Funzionale del Calcolo delle Variazioni. Atti Ace. Naz. dei Lincei, Rend. Cl. Sc. Fis. Mat. Natur. LXXXII (1988), 199210.Google Scholar
6Aviles, P. and Giga, Y.. Singularities and Rank One Properties of Hessian Measures. Duke Math. J. 58 (1989), 441467.CrossRefGoogle Scholar
7Bouchitte, G. and Dal, G. Maso. Integral Representation and Relaxation of Convex Local Functionals on BK(Ω) preprint SISSA, April 1991).Google Scholar
8Castaing, C. and Valadier, M.. Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580 (Berlin: Springer, 1977).CrossRefGoogle Scholar
9Dellacherie, C. and Meyer, P. A.. Probabilities and Potential, North Holland Mathematical Studies 29 (Paris: Hermann, 1975).Google Scholar
10Evans, C. and Gariepy, R. F.. Lecture Notes on Measure Theory and Fine Properties of Functions (book in preparation, we consider version 1.0).Google Scholar
11Fonseca, I. and M, S.ülleQuasiconvex, r. Integrands and Lower Semicontinuity in Ll. SIAM J. Anal, (to appear).Google Scholar
12Fonseca, I. and M, S.üller. Relaxation of Quasiconvex Functionals in BV(Ω, Rp) for Integrands f(x, u, Du) (Preprint Carnegie-Mellon Univ.).Google Scholar
13Gagliardo, E.. Caratterizzazione delle Traccie sulla Frontiere Relative ad alcune classi di Funzioni in piú variabili. Rend. Sent. Mat. Padova 27 (1957) 284305.Google Scholar
14Giusti, E.. Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics 80 (Boston: Birkhäuser, 1984).CrossRefGoogle Scholar
15Rudin, W.. Real and Complex Analysis (New York: McGraw-Hill, 1966).Google Scholar
16Simon, L.. Lectures on Geometric Measure Theory, Proceedings of the Center for Mathematical Analysis 3 (Canberra: Australian National University, 1983).Google Scholar
17Ziemer, W. P.. Weakly Differentiable Functions, Sobolev Spaces and Functions of Bounded Variation (Berlin: Springer, 1989).CrossRefGoogle Scholar