Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T03:11:20.498Z Has data issue: false hasContentIssue false

Perturbation of nonlinear partial differential variational inequalities, II

Published online by Cambridge University Press:  14 November 2011

Elena Stroescu
Affiliation:
Institute of Mathematics, Bucharest

Synopsis

This paper is devoted to the study of the weak respectively strong convergence of solutions of a variational inequality, with nonlinear partial differential operators of the generalized divergence form and of semimonotone type, under a perturbation of the domain of definition. In this study we use abstract convergence theorems given by Stroescu and Vivaldi, convergence concepts defined according to Stummel and compactness theorems of the natural imbedding of the Cartesian product of Sobolev spaces into the direct sum of Lp spaces, also by Stummel.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Biroli, M.. Sulla approssimazione della soluzione di alcune diseguaglianze variazionali ellitiche non lineari. 1st. Lombardo Accad. Sci. Lett. Rend. A 103 (1969), 557572.Google Scholar
2Brezis, H.. Équations et inéquations nonlinéares dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble) 18 (1968), 115175.CrossRefGoogle Scholar
3Brezis, H.. Inéquations d'évolution abstraits. C.R. Acad. Sci. Paris Sér. A-B 264 (1967), 732735.Google Scholar
4Browder, F. E., Existence theorems for nonlinear partial differential equations. Global analysis. In Proc. Symp. Pure Math. Berkeley, Calif. 16 (1968), 160. (Providence R. I.: Amer. Math. Soc., 1970).Google Scholar
5Frehse, J.. Beiträge zum Regularitätsproblem bei Variations-ungleichungen höherer Ordnung (Frankfurt a.M. Univ. Habilitationsschrift, 1970).Google Scholar
6Grigorieff, R. D.. Diskret kompakte Einbettungen in Sobolevschen Räumen. Math. Ann. 197 (1972), 7185.CrossRefGoogle Scholar
7Leray, J. and Lions, J. L.. Quelques résultats de Visik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965), 97107.CrossRefGoogle Scholar
8Lions, J. L.. Quelques méthodes de resolution des problemes aux limites nonlinéaires (Paris: Dunod, 1969).Google Scholar
9Mirgel, W.. Eine allgemeine Störungstheorie für Variations-ungleichungen (Frankfurt a.M. Univ. Dissertation, 1971).Google Scholar
10Mosco, U.. Approximation of the solutions of some variational inequalities. Ann. Scuola Norm. Sup. Pisa 21 (1967), 373394.Google Scholar
11Mosco, U.. Convergence of convex sets and of solutions of variational inequations. Advances in Math. 3 (1969), 510585.CrossRefGoogle Scholar
12Mosco, U.. Perturbation of variational inequalities. Nonlinear Functional Analysis. In Proc. Symp. Pure Math. Chicago, Ill. 18 (1968), 182194. (Providence R. I.: Amer. Math. Soc, 1970).Google Scholar
13Mosco, U.. An introduction to the approximate solution of varional inequalities. (Centro Internazionale Matematico Estivo, Erice, Constructive aspects of functional analysis, 1971). (Rome: Ed. Cremonese, 1973).Google Scholar
14Sibony, M.. Sur l'approximation d'équations et inéquations aux dériveés partielles nonlinéaires de type monotone. J. Math. Anal. Appl. 34 (1971), 502564.CrossRefGoogle Scholar
15Stroescu, E.. Weak discrete convergence of solutions of variational inequalities. Rend. Mat. 8 (1975), 815841.Google Scholar
16Stroescu, E. and Vivaldi, M. A.. Strong discrete convergence of solutions of variational inequalities Rend. Mat. 9 (1976), 1735.Google Scholar
17Stroescu, E.. Perturbation of nonlinear partial differential variational inequalities I. Proc. Roy. Soc. Edinburgh Sect. A 76 (1976), 112.CrossRefGoogle Scholar
18Stummel, F.. Discrete Konvergenz linear Operatoren I. Math. Ann. 190 (1970), 4592.CrossRefGoogle Scholar
19Stummel, F.. Perturbation theory for Sobolev spaces. Proc. Roy. Soc. Edinburgh Sect. A 73 (1975), 549.CrossRefGoogle Scholar