Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T01:52:51.535Z Has data issue: false hasContentIssue false

On the time-asymptotic behaviour of solutions in thermoelasticity*

Published online by Cambridge University Press:  14 November 2011

Reinhard Racke
Affiliation:
Institut für Angewandte Mathematik der Universität Bonn, Wegelerstrasse 10, D-5300 Bonn 1, Federal Republic of, Germany

Synopsis

We consider initial boundary value problems for the equations of linear thermoelasticity in both bounded and unbounded domains and for both nonhomogeneous and anisotropic media. For bounded domains, it is shown that the unique solution of the problem is time-asymptotically equal to the solution of a particular initial boundary value problem which is obtained from a natural decomposition of the original initial data and which represents a (in general non-vanishing) time harmonic part. For the unbounded case similar results are obtained, but now in the sense of weak convergence which lead to the result of local energy decay: the solution tends to zero in every compactum.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Agmon, S.. Lectures on elliptic boundary value problems. (Princeton: Van Nostrand, 1965).Google Scholar
2Carlson, D. E.. Linear thermoelasticity. Handbuch der Physik VIa/2, pp. 297345 (Berlin: Springer, 1972).Google Scholar
3Dafermos, C. M.. On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Rational Mech. Anal. 29 (1968), 241271.CrossRefGoogle Scholar
4Dafermos, C. M.. Contraction Semigroups and Trend to Equilibrium in Continuum Mechanics. In Lecture Notes in Mathematics 503, pp. 295306 (Berlin: Springer, 1976).Google Scholar
5Fichera, G.. Existence theorems in elasticity. Handbuch der Physik VIa/2, pp. 347389 (Berlin: Springer, 1972).Google Scholar
6Kasuga, T.. On Sobolev–Friedrichs' generalisation of derivatives. Proc. Japan Acad. 33 (1957) 596599.Google Scholar
7Kato, T.. Perturbation theory for linear operators (Berlin: Springer, 1966).Google Scholar
8Kupradze, V. D.. Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity (Amsterdam: North-Holland, 1979).Google Scholar
9Leis, R.. Zur Theorie elastischer Schwingungen in inhomogenen Medien. Arch. Rational Mech. Anal. 39 (1970), 158168.CrossRefGoogle Scholar
10Leis, R.. Außenraumaufgaben in der linearen Thermoelastizitätstheorie. Math. Methods Appl. Sci. 2 (1980), 379396.CrossRefGoogle Scholar
11Leis, R.. Uber das asymptotische Verhalten thermoelastischer Wellen im ℝ3. Math. Methods Appl. Sci. 3 (1981), 312317.CrossRefGoogle Scholar
12Leis, R.. Exterior initial boundary value problems in thermoelasticity. University of Strathclyde Seminar in Applied Mathematical Analysis. Vibration theory, ed. Roach, G., pp. 153156 (Nantwich: Shiva, 1982).Google Scholar
13Mochizuki, K.. Spectral and scattering theory for symmetric hyperbolic systems in an exterior domain. Publ. Res. Inst. Math. Sci. 5 (1969), 219258.CrossRefGoogle Scholar
14Racke, R.. Über thermoelastische Wellen. Bonner Math. Schriften 157 (1984).Google Scholar
15Nagy, B. and Foias, C.. Analyse harmonique des opérateurs de l'espace de Hilbert (Budapest: Masson et Cie, Akadémiai Kiadé, 1967).Google Scholar