Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T03:42:24.723Z Has data issue: false hasContentIssue false

On the number of L2-solutions of second order linear differential equations*

Published online by Cambridge University Press:  14 November 2011

Ian Knowles
Affiliation:
University of the Witwatersrand, Johannesburg and Department of Mathematics, University of Dundee

Synopsis

Let d denote the dimension of the vector space consisting of all solutions of the equation − (p(t)y′)′ + q(t)y = 0, at < ∞; that lie in the function space L2[a, ∞). By means of certain bounds on the solutions of this equation, sufficiency criteria are obtained for the cases d = 0 and d = 2.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Anikeeva, L. I.The absence of solutions in L 2 [X0, ∞] of a second order linear differential equation. Differential Equations 6 (1970), 17211724.Google Scholar
2Atkinson, F. V.Limit-n criteria of integral type. Proc. Roy. Soc. Edinburgh Sect. A 73 (1975), 167198.CrossRefGoogle Scholar
3Atkinson, F. V. and Evans, W. D.On solutions of a differential equation which are not of integrable square. Math. Z. 127 (1972), 323332.CrossRefGoogle Scholar
4Brinck, I.Self-adjointness and spectra of Sturm—Liouville operators. Math. Scand. 7 (1959), 219239.CrossRefGoogle Scholar
5Dunford, N. and Schwartz, J.Linear Operators. II: Spectral theory (New York: Interscience, 1963).Google Scholar
6Eastham, M. S. P.On a limit-point method of Hartman. Bult. London Math. Soc. 4 (1972), 340344.CrossRefGoogle Scholar
7Eastham, M. S. P.Limit-circle differential expressions of the second order with an oscillating coefficient. Quart. J. Math. Oxford Ser. 24 (1973), 257263.CrossRefGoogle Scholar
8Eastham, M. S. P. and Kalf, H. In preparation.Google Scholar
9Evans, W. D. On limit-point and Dirichlet-type results for second order differential expressions. In Proc. Conf. Ordinary and Partial Differential Equations, Dundee 1976. Lecture Notes in Mathematics 564, 7892 (Berlin: Springer, 1976).Google Scholar
10Everitt, W. N. On the strong limit-point condition of second order differential expressions. In Proc. Internat. Conf. on Differential Equations, Los Angeles (New York: Academic Press, 1975).Google Scholar
11Halvorsen, S. G.Bounds for solutions of second order linear differential equations with an application to L2-boundedness. Norské Vid. Selsk. Forh. (Trondheim) 36 (1963), 3640.Google Scholar
12Hartman, P. and Wintner, A.Criteria of non-degeneracy of the wave equation. Amer. J. Math. 70 (1948), 295308.CrossRefGoogle Scholar
13Hinton, D. B. Limit point-limit circle criteria for (py′)′ + qy = λky. In Proc. Conf. Ordinary and Partial Differential Equations, Dundee 1974. Eds. Sleeman, B. D. and Michael, I. M.Lecture Notes in Mathematics 415 (Berlin: Springer Verlag, 1974).Google Scholar
14Ismagilov, R. S.On the self-adjointness of the Sturn-Liouville operator. (Russian). Uspehi Mat. Nauk. 18 (1963), 161166.Google Scholar
15Ismagilov, R. S.Conditions for self-adjointness of differential equations of higher order. Doki. Akad. Nauk. 142 (1962), 12391242.Google Scholar
16Knowles, I. W.On a limit-circle criterion for second order differential operators. Quart. J. Math. Oxford Ser. 24 (1973), 451455.CrossRefGoogle Scholar
17Knowles, I. W.A limit-point criterion for a second order differential operator. J. London Math. Soc. 8 (1974), 719728.CrossRefGoogle Scholar
18Knowles, I. W. On second order differential operators of limit circle type. In Proc. Conf. Ordinary and Partial Differential Equations, Dundee 1974. Eds. Sleeman, B. D. and Michael, I. M.Lecture Notes in Mathematics 415 (Berlin: Springer, 1974).Google Scholar
19Kupcov, N. P.Conditions of non-self-adjointness of a second order linear differential operator. (Russian) Doki Akad. Nauk. 138 (1961), 767770.Google Scholar
20Kupcov, N. P.On estimates for solutions of a system of linear differential equations. Uspehi Mat. Nauk. 18 (1963), 159164.Google Scholar
21Levinson, N.The growth of the solutions of a differential equation. Duke Math. J. 8 (1941), 110.CrossRefGoogle Scholar
22Levinson, N.Criteria for the limit-point case for second order linear differential operators. Časopis Pešt. Mat. Fys. 74 (1949), 1720.CrossRefGoogle Scholar
23Liapunov, A. M.Problème general de la stabilité du movement. Ann. of Math. Studies 17 (1949).Google Scholar
24Lidskii, V. B.On the number of square integrable solutions of the system of differential equations −y″ + P(t)y = λy. Doki. Akad. Nauk. S. S. S. R. 95 (1954), 217220.Google Scholar
25Naimark, M. A.Linear Differential Operators. Pt. II. (New York: Ungar, 1968).Google Scholar
26Pavlyuk, I. A.Necessary and sufficient conditions for boundedness in the space L2(0, ∞) for solutions of a class of linear differential equations of second order (Ukrainian). Dopovidi Akad. Nauk. Ukrain R. S. R. (1960), 156158.Google Scholar
27Read, T. T. A limit-point criterion for −(py′)′ + qy. In Proc. Conf. Ordinary and Partial Differential Equations, Dundee 1976. Lecture Notes in Mathematics 564, 383390 (Berlin: Springer Verlag, 1976).Google Scholar
28Sears, D. B.Note on the uniqueness of Green's functions associated with certain differential equations. Canad. J. Math. 2 (1950), 312325.CrossRefGoogle Scholar
29Sears, D. B.Some properties of a differential equation I and II. J. London Math. Soc. 27 (1952), 180188, and /. London Math. Soc. 29 (1954), 354–360.CrossRefGoogle Scholar
30Titchmarsh, E. C.Eigenfunction Expansions Pt. 1. (Oxford: Clarendon, 1962).Google Scholar
31Walter, J.Bermerkungen zu dem grenzpumktfall-kriterium von N. Levinson. Math. Z. 105 (1968), 345350.CrossRefGoogle Scholar
32Weidmann, J.Zur spectraltheorie von Sturm-Liouville-Operatoren. Math. Z. 98 (1967), 268302.CrossRefGoogle Scholar
33Weyl, H.Ueber gewohnliche differentialgleichungen mit Singularitäten und die zugehörigen entwicklungen willkürlicher functionem. Math. Ann. 68 (1910), 222269.CrossRefGoogle Scholar
34Wintner, A.(L2)-connections between the kinetic and potential energies of linear systems. Amer. J. Math. 69 (1947), 513.CrossRefGoogle Scholar
35Wintner, A.On the normalization of characteristic differentials in continuous spectra. Phys. Rev. 72 (1947), 516517.CrossRefGoogle Scholar
36Wintner, A.A criterion for the non-existence of L2-solutions of a non-oscillatory differential equation. J. London Math. Soc. 25 (1950), 347351.Google Scholar