Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T08:34:12.377Z Has data issue: false hasContentIssue false

On the eigenvalue asymptotics for a nonselfadjoint elliptic problem involving an indefinite weight

Published online by Cambridge University Press:  14 November 2011

M. Faierman
Affiliation:
Department of Mathematics, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa

Abstract

We derive asymptotic formulae for the distribution functions of the real parts of the eigenvalues of an oblique derivative problem involving an indefinite weight function.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, R. A.. Sobolev Spaces (New York: Academic Press, 1975).Google Scholar
2Agmon, S.. On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math. 15 (1962), 119–47.CrossRefGoogle Scholar
3Agmon, S.. Lectures on Elliptic Boundary Value Problems (Princeton, N.J.: Van Nostrand, 1965).Google Scholar
4Agmon, S.. On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems. Comm. Pure Appl. Math. 18 (1965), 627–63.CrossRefGoogle Scholar
5Agmon, S., Doughs, A. and Nirenberg, L.. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12 (1959), 623727.CrossRefGoogle Scholar
6Beals, R.. Asymptotic behaviour of the Green's function and spectral function of an elliptic operator. J. Fund. Anal. 5 (1970), 484503.CrossRefGoogle Scholar
7Birman, M. S. and Solomjak, M. Z.. Spectral asymptotics of nonsmooth elliptic operators. II. Trans. Moscow Math. Soc. 28 (1973), 132.Google Scholar
8Birman, M. S. and Solomjak, M. Z.. Asymptotic behaviour of the spectrum of differential equations. J. Soviet Math. 12 (1974), 247–82.CrossRefGoogle Scholar
9Birman, M. S. and Solomjak, M. Z.. Asymptotics of the spectrum of variational problems on solutions of elliptic equations. Siberian Math. J. 20 (1979), 115.CrossRefGoogle Scholar
10Birman, M. S. and Solomjak, M. Z.. Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory. Amer. Math. Soc. Transl. (2) 114 (1980).Google Scholar
11Bognár, J.. Indefinite Inner Product Spaces (Berlin: Springer, 1974).CrossRefGoogle Scholar
12Browder, F. E.. On the spectral theory of elliptic differentiable opeators. I. Math. Ann. 142 (1961), 22130.CrossRefGoogle Scholar
13Dunford, N. and Schwartz, J. T.. Linear Operators, Part I (New York: Wiley, 1988).Google Scholar
14Faierman, M.. On the eigenvalues of nonselfadjoint problems involving indefinite weights. Math. Ann. 282(1988), 369–77.CrossRefGoogle Scholar
15Faierman, M.. Non-selfadjoint elliptic problems involving an indefinite weight. Comm. Partial Differential Equations 15 (1990), 939–82.CrossRefGoogle Scholar
16Faierman, M.. Eigenvalue asymptotics for a non-selfadjoint elliptic problem involving an indefinite weight. Rocky Mountain J. Math, (to appear).Google Scholar
17Fleckinger, J. and Lapidus, M. L.. Eigenvalues of elliptic boundary value problems with an indefinite weight function. Trans. Amer. Math. Soc. 295 (1986), 305–24.CrossRefGoogle Scholar
18Fleckinger, J. and Lapidus, M. L.. Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights. Arch. Rational Mech. Anal. 98 (1987), 329–56.CrossRefGoogle Scholar
19Gohberg, I. C. and Krein, M. G.. Introduction to the Theory of Linear Nonselfadjoint Operators (Providence, R.I.: American Mathematical Society, 1969).Google Scholar
20Grisvard, P.. Elliptic Problems in Nonsmooth Domains (London: Pitman, 1985).Google Scholar
21Hess, P.. On the asymptotic distribution of eigenvalues of some non-selfadjoint problems. Bull. London Math. Soc. 18 (1986), 181–4.CrossRefGoogle Scholar
22Hess, P.. On the spectrum of elliptic operators with respect to indefinite weights. Linear Algebra Appl. 84 (1986), 99109.CrossRefGoogle Scholar
23Kato, T.. Perturbation Theory for Linear Operators, 2nd edn. (Berlin: Springer, 1976).Google Scholar
24Lions, J. L. and Magenes, E.. Non-homogeneous Boundary Value Problems and Applications, Vol. I (Berlin: Springer, 1972).Google Scholar
25Maz'ja, V. G.. Sovolev Spaces (Berlin: Springer, 1985).CrossRefGoogle Scholar
26Schechter, M.. General boundary value problems for elliptic partial differential equations. Comm. Pure Appl. Math. 12 (1959), 457–82.CrossRefGoogle Scholar
27Stein, E. M.. Singular Integrals and Differentiability Properties of Functions (Princeton, N.J.: Princeton University Press, 1970).Google Scholar
28Triebel, H.. Interpolation Theory, Function Spaces, Differential Operators (Amsterdam: North-Holland, 1978).Google Scholar