Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T23:55:41.176Z Has data issue: false hasContentIssue false

On certain permutation representations of the Hall–Janko group

Published online by Cambridge University Press:  14 November 2011

Alan R. Prince
Affiliation:
Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, U.K.

Synopsis

Certain permutation representations of the Hall–Janko group J2 are studied. These representations are of interest in connection with the problem of whether J2 can act as astrongly irreducible collineation group of a finite projective plane.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Cohen, A. M.. Geometries originating from certain distance-regular graphs. In Finite Geometries and Designs, eds. Cameron, P. J., Hirschfeld, J. W. P. and Hughes, D. R., pp. 8187, London Mathematical Society Lecture Note Series 49 (Cambridge: Cambridge University Press, 1981).CrossRefGoogle Scholar
2Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.. An Atlas of Finite Groups (Oxford: Oxford University Press, 1985).Google Scholar
3Finkelstein, L. and Rudvalis, A.. Maximal subgroups of the Hall–Janko–Wales group. J. Algebra 24 (1973), 486493.CrossRefGoogle Scholar
4Hall, M. Jr., and Wales, D.. The simple group of order 604,800. J. Algebra 9 (1968), 417450.CrossRefGoogle Scholar
5Ivanov, A. A., Klin, M. Kh. and Faradzhev, I. A.. Primitive representations of nonabelian simple groups of order less than 106, Part I. Preprint, Moskva Vsesoyuznyj Nauchno-Issledovatel'skij Institut Sistemnykh Issledovanij, 40 p. R.O. 12 (1982).Google Scholar
6Janko, Z.. Some new simple groups of finite order, I. Sympos. Math. 1 (1968), 2564.Google Scholar
7Prince, A. R.. Strongly irreducible collineation groups and the Hall–Janko group (to appear).Google Scholar
8Reifart, A. and Stroth, G.. On finite simple groups containing perspectivities. Geom. Dedicata 13 (1982), 746.CrossRefGoogle Scholar