No CrossRef data available.
Article contents
On a classical two-component plasma with a logarithmic interaction
Published online by Cambridge University Press: 14 November 2011
Synopsis
We prove the existence of the thermodynamic limit of the free energy per particle for a twocomponent plasma in one space dimension and with a logarithmic pair interaction.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 101 , Issue 3-4 , 1985 , pp. 187 - 192
- Copyright
- Copyright © Royal Society of Edinburgh 1985
References
1Lenard, A.. Exact statistical mechanics of a one-dimensional system with Coulomb forces. J. Math. Phys. 2 (1961), 682–693.Google Scholar
2Fröhlich, J. and Park, Y. M.. Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems. Comm. Math. Phys. 59 (1978), 235–266.CrossRefGoogle Scholar
3Gunson, J. and Panta, L. S.. Two dimensional neutral Coulomb gas. Comm. Math. Phys. 52 (1977), 295–304.Google Scholar
4van den Berg, M.. On a classical two-component plasma with a quadratic interaction. Phys. Lett. 82A (1981), 241–243.Google Scholar
5Whittaker, E. D. and Watson, G. N.. A course of modern analysis, 4th edn, p. 258 (Cambridge University Press, 1962).Google Scholar
6Griffiths, R. B.. Free energy of interacting magnetic dipoles. Phys. Rev. 176 (1968), 655–659.Google Scholar
7Knorr, G.. The partition function of a two-dimensional plasma. Phys. Lett. 28A (1968), 166–167.Google Scholar
8May, R.. Exact equation of state for a two-dimensional plasma. Phys. Lett. 25A (1967), 282.Google Scholar
9Hauge, E. H. and Hemmer, P. C.. The two-dimensional Coulomb gas. Physica Norvegica 5 (1971), 209–217.Google Scholar
10van den Berg, M. and Niemeijer, Th.. The zero-distribution of the grand partition function in the complex fugacity plane of gases of point particles with logarithmic interaction. Physica 85A (1976), 186–192.Google Scholar