Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T02:04:50.121Z Has data issue: false hasContentIssue false

A non-probabilistic approach to Poisson spaces

Published online by Cambridge University Press:  14 November 2011

Alan L. T. Paterson
Affiliation:
Department of Mathematics, University of Aberdeen

Synopsis

Using techniques from probability theory, it has been established that if μ is a probability measure on a separable, locally compact group, then the space of μ-harmonic functions on the group can be identified with C(X) for some compact, Hausdorff space X. The space X is known as the Poisson space of μ. We generalise this result in the context of a measure μ on a locally compact semigroup S, in particular establishing the existence of a Poisson space for non-separable groups. The proof is non-probabilistic, and depends on properties of projections on C(K)(K compact Hausdorff). We then show that if S is compact and the support of μ generates S, then the Poisson space associated with μ, is X, where X×G×Y is the Rees product representing the kernel of S.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Azencott, R.. Espaces de Poisson des groupes localement compacts. Lecture Notes in Mathematics 148 (Berlin: Springer, 1970).Google Scholar
2Bonsall, F. F. and Duncan, J.. Complete normed algebras (Berlin: Springer, 1973).CrossRefGoogle Scholar
3Cartier, P.. Espaces de Poisson des groupes localement compacts. Séminaire Bourbaki No. 370 (19691970).Google Scholar
4Choi, M. D. and Effros, E. G.. Injectivity and operator spaces. J. Functional Analysis 24 (1977), 156209.CrossRefGoogle Scholar
5Day, M. M.. Amenable semigroups. Illinois J. Math. 1 (1957), 509544.CrossRefGoogle Scholar
6Furstenberg, H.. A Poisson formula for semisimple Lie groups. Ann. of Math. 77 (1963), 335386.CrossRefGoogle Scholar
7Furstenberg, H.. Boundary theory and stochastic processes on homogeneous spaces, pp. 193229 of Harmonic Analysis on Homogeneous Spaces, Proceedings of Symposia in Pure Mathematics (Providence, R.I.: Ainer. Math. Soc, 1973).CrossRefGoogle Scholar
8Furstenberg, H.. Random walks on Lie groups, pp. 467489 of Harmonic Analysis and Representations of Semisimple Lie groups (Dordrecht, Holland: D. Reidel, 1980).CrossRefGoogle Scholar
9Kharaghani, H.. The evolution of bounded linear functionals with application to invariant means. Pacific J. Math. 78 (1978), 369374.CrossRefGoogle Scholar
10Milnes, P.. Compactiiications of semitopological semigroups. J. Austral. Math. Soc. 15 (1973), 488503.CrossRefGoogle Scholar
11Rosenblatt, M.. Markov Processes. Structure and Asymptotic Behavior (Berlin: Springer, 1971).CrossRefGoogle Scholar
12Stinespring, W. F.. Positive functions on C*-algebras. Proc. Amer. Math. Soc. 6 (1955), 211216.Google Scholar
13Warner, G.. Harmonic Analysis on Semisimple Lie groups (Berlin: Springer, 1972).Google Scholar
14Wulbert, D. E.. Avenging projections. Illinois J. Math. 13 (1969), 689693.CrossRefGoogle Scholar