Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T09:54:36.688Z Has data issue: false hasContentIssue false

Nonlocal problems arising from the birth-jump processes

Published online by Cambridge University Press:  27 December 2018

M. Delgado
Affiliation:
Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Fac. de Matemáticas, Univ. de Sevilla, C/. Tarfia s/n 41012, Sevilla, Spain ([email protected]; [email protected])
A. Suárez
Affiliation:
Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Fac. de Matemáticas, Univ. de Sevilla, C/. Tarfia s/n 41012, Sevilla, Spain ([email protected]; [email protected])
I. B. M. Duarte
Affiliation:
Universidade Federal do Pará, Faculdade de Matemática, CEP: 66075-110 Belém - Pa, Brazil ([email protected])

Abstract

In this paper, we prove the existence and uniqueness of a positive solution for a nonlocal logistic equation arising from the birth-jump processes. For this, we establish a sub-super solution method for nonlocal elliptic equations, we perform a study of the eigenvalue problems associated with these equations and we apply these results to the nonlocal logistic equation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Allegretto, W. and Barabanova, A.. Positivity of solutions of elliptic equations with nonlocal terms. Proc. R. Soc. Edinb. A 126 (1996), 643663.Google Scholar
2Alves, C. O., Delgado, M., Souto, M. A. S. and Suárez, A.. Existence of positive solution of a nonlocal logistic population model. Z. Angew. Math. Phys. 66 (2015), 943953.Google Scholar
3Amann, H.. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18 (1976), 620709.Google Scholar
4Borsi, I., Fasano, A., Primicerio, M. and Hillen, T.. A non-local model for cancer stem cells and the tumor growth paradox. Math. Med. Bio. 34 (2015), 5975.Google Scholar
5Corrêa, F. J. S. A., Delgado, M. and Suárez, A.. Some non-local problems with non-linear diffusion. Math. Comput. Modelling 54 (2011a), 22932305.Google Scholar
6Corrêa, F. J. S. A., Delgado, M. and Suárez, A.. Some nonlinear heterogeneous problems with nonlocal reaction term. Adv. Differential Equations 16 (2011b), 623641.Google Scholar
7Davidson, F. A. and Dodds, N.. Existence of positive solutions due to nonlocal interactions in a class of nonlinear boundary value problems. Methods Appl. Anal. 14 (2007), 1527.Google Scholar
8Enderling, H., Hahnfeldt, P. and Hillen, T.. The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull. Math. Biology 75 (2013), 161184.Google Scholar
9Fasano, A., Mancini, A. and Primicerio, M.. Tumours with cancer stem cells: A PDE model. Mathematical Biosciences 272 (2016), 7680.Google Scholar
10Freitas, P. and Sweers, G.. Positivity results for a nonlocal elliptic equation. Proc. R. Soc. Edinb. A 128 (1998), 697715.Google Scholar
11Furter, J. and Grinfeld, M.. Local vs. nonlocal interactions in population dynamics. J. Math. Biol. 27 (1989), 6580.Google Scholar
12Gilbarg, D. and Trudinger, N. S.. Elliptic Partial Differential Equations of Second Order, 2nd edn (Berlin: Springer-Verlag, 1983).Google Scholar
13Greese, B., Hillen, T., Martin, J. and de Vries, G.. Birth-jump processes and application to forest fire spotting. J. of Biological Dynamics 9 (sup 1) (2015), 104127.Google Scholar
14López-Gómez, J.. The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems. J. Differ. Equ. 127 (1996), 263294.Google Scholar
15López-Gómez, J.. Linear Second Order Elliptic Operators (Hackensack, New Jersey: World Scientific Publishing Co. Pte. Ltd., 2013).Google Scholar
16Yamada, Y.. On logistic diffusion equations with nonlocal interaction terms. Nonlinear. Anal. 118 (2015), 5162.Google Scholar