Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T09:27:23.663Z Has data issue: false hasContentIssue false

Non-linear mixed boundary value problems for parabolic partial differential equations

Published online by Cambridge University Press:  14 November 2011

Joelle Bailet-Intissar
Affiliation:
Faculté des Sciences, Département de Mathématiques, B.P. 1014, Rabat, Maroc

Synopsis

A sufficient condition on the angles of a bounded open subset Ω of ℝn is given for the best possible regularity of a solution to a class of parabolic problems with non-linear mixed boundary conditions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bailet-Intissar, J.. Problemes aux limites non lineaires avec conditions melees. C.R. Acad. Sci. Paris Sér. A-B 287 (1978), A1061–A1063.Google Scholar
2Bailet-Intissar, J.. Non linear mixed boundary value problems for elliptic partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 347359.CrossRefGoogle Scholar
3Brezis, H.. Monotonicity methods in Hilbert spaces and some applications to non linear partial differential equations. In Contributions to non linear functional analysis (Proc. Sympos. Math. Res. Center Univ. Wisconsin, Madision, Wise, 1971), pp. 101156 (New York: Academic Press, 1971).Google Scholar
4Duvaut, G. and Lions, J. L.. Sur de nouveaux problemes d'inéquations variationnelles posés par la mécanique: le cas stationnaire. C.R. Acad. Sci. Paris Sér. A–B 269 (1969), A510–A513.Google Scholar
5Duvaut, G. and Lions, J. L.. Nouvelles inéquations variationnelles recontrées en thermique et en thermoelasticité. C.R. Acad. Sci. Paris Sér. A–B 269 (1969), A1198–A1201.Google Scholar
6Fichera, G.. Problemi elastostatici con vincoli unilaterali: II problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. 1a 17 (1963/1964), 91140.Google Scholar
7Grisvard, P.. Caracterisation de quelques espaces d'interpolation. Arch. Rational Mech. Anal. 25 (1967), 4043.CrossRefGoogle Scholar