Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T07:05:29.374Z Has data issue: false hasContentIssue false

Minimizing properties of arbitrary solutions to the Ginzburg–Landau equation

Published online by Cambridge University Press:  14 November 2011

M. Comte
Affiliation:
Laboratoire d'Analyse Numérique, Tour 55–65, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
P. Mironescu
Affiliation:
Analyse Numérique et EDP, Université Paris Sud, Bâtiment 425, 91405 Orsay Cedex, France

Extract

We consider the Ginzburg–Landau type equation

where G is a smooth bounded domain in ℝ2, g ∊ C∞(∂G;ℝ2 / {0}), and ε > 0 is a small parameter. We prove the uniqueness of solutions to this equation under some non-vanishing assumptions on uε, or under conditions on the boundary function g.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bethuel, F., Brezis, H. and Hélein, F.. Asymptotics for minimizers of a Ginzburg–Landau functional. Calculus Variations PDE 1 (1993), 123148.CrossRefGoogle Scholar
2Bethuel, F., Brezis, H. and Hélein, F.. Ginzburg–Landau vortices (Basel: Birkhäuser, 1994).CrossRefGoogle Scholar
3Brezis, H. and Nirenberg, L.. Hl versus C1 local minimizers. C. R. Acad. Sci. Paris 317 (1993), 465472.Google Scholar
4Brezis, H., Merle, F. and Rivière, T.. Quantization effects for −Δu = u(l − |u|2) in ℝ2. Arch. Ration. Mech. Analysis 126 (1994), 123148.CrossRefGoogle Scholar
5Comte, M. and Mironescu, P.. Remarks on non minimizing solutions of a Ginzburg–Landau type equation. Asymptotic Analysis 13 (1996), 199215.CrossRefGoogle Scholar
6Greenberg, J. M.. Spiral waves for λ-w systems. SIAM J. Appl. Math. 39 (1980), 301309.CrossRefGoogle Scholar
7Hagan, P.. Spiral waves in reaction diffusion equations. SIAM J. Appl. Math 42 (1982), 762786.CrossRefGoogle Scholar
8Lassoued, L. and Mironescu, P.. Asymptotic behavior of minimizers for a Ginzburg–Landau type energy with discontinuous weight. (In the press.)Google Scholar
9Lin, F. H.. Mixed vertex and anti-vertex solutions of Ginzburg–Landau equations. (In the press.)Google Scholar
10Mironescu, P.. Les minimiseurs locaux pour l'équation de Ginzburg–Landau sont symétrie radiale. C. R. Acad. Sci. Paris 323 (1996), 593598.Google Scholar
11Mironescu, P.. Explicit bounds for solutions to a Ginzburg–Landau type equation. Rev. Roumaine Math. Pures Appl. 1 (1996), 263271.Google Scholar
12Shafrir, I.. Remarks on solutions of −Δu = (l − |u|2) C. R. Acad. Sci. Paris 318 (1994), 327331.Google Scholar
13Shafrir, I.. L∞ approximation for minimizers of the Ginzburg–Landau functional. C. R. Acad. Sci. Paris 321 (1995), 705710.Google Scholar
14Ye, D. and Zhou, F.. Uniqueness of solutions of Ginzburg-Landau problem. Nonlinear Analysis Theory Methods Applic. 26 (1996), 603613.CrossRefGoogle Scholar