Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T08:37:26.738Z Has data issue: false hasContentIssue false

Maximal torsional rigidity: some qualitative remarks

Published online by Cambridge University Press:  14 November 2011

R. Tahraoui
Affiliation:
Ceremade, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cedex 16, France

Extract

We give an existence result and some qualitative remarks about the optimisation of the torsional rigidity of a beam.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, R. A.. Sobolev Spaces (New York: Academic Press, 1975).Google Scholar
2Alvino, A., Lions, P. L. and Trombetti, G.. On optimization problems with prescribed rearrangement, Public Dipart. Mat. Appl. R. Cacciopoli 31 (Naples: University of Naples, 1986).Google Scholar
3Alvino, A., Lions, P. L. and Trombetti, G.. On optimization problems with prescribed rearrangements. Nonlinear Anal. 13 (1989), 185220.CrossRefGoogle Scholar
4Banichuk, N. B., Problems and Methods of Optimal Structural Design (London: Plenum Press, 1983).CrossRefGoogle Scholar
5Buttazzo, G. and Dal, G. Maso. Shape optimisation for Dirichlet problem: relaxed formulation and optimality conditions (preprint S.I.S.S.A., Trieste 124 M, November, 1989).Google Scholar
6Cea, J.. Problems of shape optimal design. In Optimization of Distributed Parameter Structures, NATO Proceedings, eds. Haug, E. J. and Cea, J. (Amsterdam: Sÿthoff and Noordhoff, 1981).Google Scholar
7Chenais, D.. On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52(1975), 189219.CrossRefGoogle Scholar
8Gonzales de Paz, R. B.. On the optimal design of elastic shafts. Math. Model. Numer. Anal. 23 (1989), 615625.CrossRefGoogle Scholar
9Kinderlehrer, D. and Stampacchia, G.. An Introduction to Variational Inequalities and Their Applications (New York: Academic Press, 1980).Google Scholar
10Kohn, R. V. and Vogelius, M.. Relaxation of a variational method problem, I, II, III. Comm. Pure Appl. Math. 39 (1986), 113133; 139–182; 745–777.CrossRefGoogle Scholar
11Lanchon, H.. Torsion elastoplastique d'un arbre. J. Mécanique 13 (1974), 267318.Google Scholar
12Mossino, J.. Inégalités isopérimétriques et applications en physique. Travaux en cours, Editeurs des Sciences et des Arts (Paris: Hermann, 1984).Google Scholar
13Murat, F. and Simon, J.. Sur le contrôle par un domaine géométrique (Publication 76015 du Laboratoire d'Analyse Numérique Paris VI, 1976).Google Scholar
14Murat, F. and Tartar, L.. Calcul des variations et homogénéisation. Ecole d'été d'analyse numérique. CEA-EDF-INRIA, 323é367 (Paris: Eyrolles, 1985).Google Scholar
15Pironneau, O.. Optimal Shape Design for Elliptic Systems (New York: Springer, 1984).CrossRefGoogle Scholar
16Polya, G. and Weinstein, A.. On the torsion rigidity of multiply-connected cross-section. Ann. Math. 52(1950), 154163.CrossRefGoogle Scholar
17Stampacchia, G.. Equations elliptiques du second ordre à coefficients discontinus (Montreal: Presses de l'Université de Montreal, 1966).Google Scholar
18Tahraoui, R.. Contrôle optimal à réarrangement fixé. C. R. Acad. Set Paris Ser. 2 Math. 303 (1986), 955958.Google Scholar
19Tahraoui, R.. Quelques remarques sur le contrôle des valeurs propres. Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. VIII, eds. Lions, J. L. and Brézis, H., 176–213 (London: Pitman, 1988).Google Scholar
20Tahraoui, R.. Contrôle optimal dans les équations elliptiques. SIAM J. Control 30 (1992), 495521.CrossRefGoogle Scholar
21Tahraoui, R.. Optimal control for elliptic equation and applications. Internat. Ser. Numer. Math. 107 (1992), 263274.Google Scholar
22Tahraoui, R.. Connected character of level sets in semilinear equations (in prep.).Google Scholar
23Talenti, G.. Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 697718.Google Scholar
24Zolesio, J. P.. Identification de domaines par deformation (Doctoral Thesis, Université de Nice, 1979).Google Scholar