Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-25T17:37:17.098Z Has data issue: false hasContentIssue false

Maximal noncompactness of limiting Sobolev embeddings

Published online by Cambridge University Press:  18 November 2024

Jan Lang
Affiliation:
Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, OH 43210-1174 and Faculty of Electrical Engineering, Department of Mathematics, Czech Technical University in Prague, Technická 2, 166 27 Praha 6, Czech Republic ([email protected])
Zdeněk Mihula
Affiliation:
Faculty of Electrical Engineering, Department of Mathematics, Czech Technical University in Prague, Technická 2, 166 27 Praha 6, Czech Republic ([email protected]) (corresponding author)
Luboš Pick
Affiliation:
Faculty of Mathematics and Physics, Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic ([email protected])

Abstract

We develop a new method suitable for establishing lower bounds on the ball measure of noncompactness of operators acting between considerably general quasinormed function spaces. This new method removes some of the restrictions oft-presented in the previous work. Most notably, the target function space need not be disjointly superadditive nor equipped with a norm. Instead, a property that is far more often at our disposal is exploited—namely the absolute continuity of the target quasinorm.

We use this new method to prove that limiting Sobolev embeddings into spaces of Brezis–Wainger type are so-called maximally noncompact, i.e. their ball measure of noncompactness is the worst possible.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adams, R. A., Sobolev spaces, Pure and Applied Mathematics, Vol. 65 (Academic Press, New York-London, 1975).Google Scholar
Banaś, J., and Goebel, K., Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60 (Marcel Dekker, Inc, New York, 1980).Google Scholar
Bennett, C., and Rudnick, K., On Lorentz-Zygmund spaces, Dissertationes Math. (Rozprawy Mat.), 175 (1980), 167.Google Scholar
Bennett, C., and Sharpley, R., Interpolation of operators, Pure and Applied Mathematics, Vol. 129 (Academic Press, Inc, Boston, MA, 1988).Google Scholar
Benyamini, Y., and Lindenstrauss, J., Geometric nonlinear functional analysis, American Mathematical Society Colloquium Publications, Vol. 1 (volume 48 of American Mathematical Society, Providence, RI, 2000).Google Scholar
Bouchala, O., Measures of non-compactness and Sobolev–Lorentz Spaces, Z. Anal. Anwend., 39 (2020), 2740.CrossRefGoogle Scholar
Brézis, H. and Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437477.CrossRefGoogle Scholar
Brézis, H., and Wainger, S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Commun. Partial Differential Equations, 5 (1980), 773789.CrossRefGoogle Scholar
Brudnyi, J. A., Rational approximation and imbedding theorems, Dokl. Akad. Nauk SSSR, 247 (1979), 269272.Google Scholar
Carro, M. J. and Soria, J., Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal., 112 (1993), 480494.CrossRefGoogle Scholar
Cavaliere, P. and Mihula, Z., Compactness for Sobolev-type trace operators, Nonlinear Anal., 183 (2019), 4269.CrossRefGoogle Scholar
Cavaliere, P. and Mihula, Z., Compactness of Sobolev-type embeddings with measures, Commun. Contemp. Math., 24 (2022), .CrossRefGoogle Scholar
Cianchi, A. and Pick, L., Sobolev embeddings into BMO, VMO, and $L_\infty$, Ark. Mat., 36 (1998), 317340.CrossRefGoogle Scholar
Cwikel, M., Kamińska, A., Maligranda, L. and Pick, L., Are generalized Lorentz “spaces” really spaces?, Proc. Amer. Math. Soc., 132 (2004), 36153625.CrossRefGoogle Scholar
Cwikel, M., Nilsson, P. and Schechtman, G., Interpolation of weighted Banach lattices. A characterization of relatively decomposable Banach lattices, Mem. Amer. Math. Soc., 165 (2003), .Google Scholar
Cwikel, M., and Pustylnik, E., Sobolev type embeddings in the limiting case, J. Fourier Anal. Appl., 4 (1998), 433446.CrossRefGoogle Scholar
Darbo, G., Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), 8492.Google Scholar
Edmunds, D. E. and Evans, W. D., Spectral theory and differential operators, Oxford Mathematical Monographs, second edition. (Oxford University Press, Oxford, 2018).Google Scholar
Hansson, K., Imbedding theorems of Sobolev type in potential theory, Math. Scand., 45 (1979), 77102.CrossRefGoogle Scholar
Hempel, J. A., Morris, G. R. and Trudinger, N. S., On the sharpness of a limiting case of the Sobolev imbedding theorem, Bull. Austral. Math. Soc., 3 (1970), 369373.CrossRefGoogle Scholar
Hencl, S., Measures of non-compactness of classical embeddings of Sobolev spaces, Math. Nachr., 258 (2003), 2843.CrossRefGoogle Scholar
Ioku, N., Attainability of the best Sobolev constant in a ball, Math. Ann., 375 (2019), 116.CrossRefGoogle Scholar
Kamińska, A. and Maligranda, L., Order convexity and concavity of Lorentz spaces $\Lambda_{p,w}, 0 \lt p \lt \infty$, Studia Math., 160 (2004), 267286.CrossRefGoogle Scholar
Kerman, R. and Pick, L., Compactness of Sobolev imbeddings involving rearrangement-invariant norms, Studia Math., 186 (2008), 127160.CrossRefGoogle Scholar
Kuratowski, C., Sur les espaces complets, Fund. Math., 15 (1930), 301309.CrossRefGoogle Scholar
Lang, J., Mihula, Z. and Pick, L., Compactness of Sobolev embeddings and decay of norms, Studia Math., 265 (2022), 135.CrossRefGoogle Scholar
Lang, J., Musil, V., Olšák, M. and Pick, L., Maximal non-compactness of Sobolev embeddings, J. Geom. Anal., 31 (2021), 94069431.CrossRefGoogle Scholar
Leoni, G., A first course in Sobolev spaces, Graduate Studies in Mathematics., 2nd ed., Vol. 181 (American Mathematical Society, Providence, RI, 2017).Google Scholar
Lieb, E. H., and Loss, M., Analysis, Graduate Studies in Mathematics., 2nd ed., Vol. 14 (American Mathematical Society, Providence, RI, 2001).Google Scholar
Lindenstrauss, J., and Tzafriri, L., Classical Banach spaces. II, Ergebnisse der Mathematik und Ihrer Grenzgebiete [Results in Mathematics and Related Areas], Vol. 97 (Springer-Verlag, Berlin-New York, 1979).Google Scholar
Lions, P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana., 1 (1985), 145201.CrossRefGoogle Scholar
Lions, P.-L., The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana., 1 (1985), 45121.CrossRefGoogle Scholar
Malý, J., Mihula, Z., Musil, V. and Pick, L., Maximal non-compactness of embeddings into Marcinkiewicz spaces. (2024), Preprint. arXiv:2404.04694 [math.FA].Google Scholar
Malý, J. and Pick, L., An elementary proof of sharp Sobolev embeddings, Proc. Amer. Math. Soc., 130 (2002), 555563.CrossRefGoogle Scholar
Maz’ya, V., Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], augmented ed., Vol. 342 (Springer, Heidelberg, 2011).Google Scholar
Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1975), 10771092.CrossRefGoogle Scholar
Opic, B. and Pick, L., On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl., 2 (1999), 391467.Google Scholar
Pohozhaev, S. I., On the imbedding Sobolev theorem for pl = n, Doklady Conference, Section Math. Moscow Power Inst., 165 (1965), 158170 (Russian).Google Scholar
Sadovskii, B. N., Measures of noncompactness and condensing operators, Problemy Mat. Anal. Slož. Sistem, 2 (1968), 89119.Google Scholar
Slavíková, L., Compactness of higher-order Sobolev embeddings, Publ. Mat., 59 (2015), 373448.CrossRefGoogle Scholar
Stepanov, V. D., The weighted Hardy’s inequality for nonincreasing functions, Trans. Amer. Math. Soc., 338 (1993), 173186.Google Scholar
Strichartz, R. S., A note on Trudinger’s extension of Sobolev’s inequalities, Indiana Univ. Math. J., 21 (1971/72), 841842.CrossRefGoogle Scholar
Struwe, M., A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511517.CrossRefGoogle Scholar
Trudinger, N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473483.Google Scholar
Yudovich, V. I., Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Doklady, 2 (1961), 746749 (Russian).Google Scholar