Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T22:28:16.002Z Has data issue: false hasContentIssue false

Linked eigenvalue problems for the p-Laplacian

Published online by Cambridge University Press:  14 November 2011

P. A. Binding
Affiliation:
Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
Y. X. Huang
Affiliation:
Department of Mathematical Sciences, Memphis State University, Memphis, TN 38152, U.S.A.

Extract

Linked equations of the form

are studied on a bounded smooth domain in RN for λ ∈ R2. Existence and uniqueness of solutions are discussed for fi homogeneous of order p – 1 in ui, generalising the ‘Klein Oscillation Theorem’ when p = 2, N = 1. Bifurcation from the principal eigenvalue is also considered for nonhomogeneous perturbations fi of order greater than p – 1.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alexander, J. C. and Antman, S. S.. Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems. Arch. Rational Mech. Anal. 76(1981), 339354.Google Scholar
2Ambrosetti, A. and Rabinowitz, P. H.. Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349381.CrossRefGoogle Scholar
3Anane, A.. Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. 1 Math. 305 (1987), 725728.Google Scholar
4Atkinson, F. V.. Multiparameter Eigenvalue Problems, Vol. 1 (New York: Academic Press, 1972).Google Scholar
5Azorero, J. P. G. and Alonso, I. P.. Existence and uniqueness for the p-Laplacian: nonlinear eigenvalues. Comm. Partial Differential Equations 12 (1987), 13891430.Google Scholar
6Binding, P. A.. Variational methods for one and several parameter nonlinear eigenvalue problems. Canad. J. Math. 33 (1981), 210228.CrossRefGoogle Scholar
7Binding, P. A.. Perturbation and bifurcation of nonsingular multiparametric eigenvalues. Nonlinear Anal. 8 (1984), 335352.CrossRefGoogle Scholar
8Binding, P. A., Browne, P. J., Huang, Y. X. and Picard, R. H.. On eigencurves of elliptic boundary value problems. Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 161171.CrossRefGoogle Scholar
9Binding, P. A. and Browne, P. J.. Multiparameter Sturm theory. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 173184.CrossRefGoogle Scholar
10Binding, P. A. and Browne, P. J.. Applications of two parameter spectral theory to symmetric generalised eigenvalue problems. Appl. Anal. 29 (1988), 107142.CrossRefGoogle Scholar
11Binding, P. A. and Browne, P. J.. Asymptotics of eigencurves for second order ordinary differential equations, I, II J. Differential Equations 88 (1990), 3045; 89 (1991), 224–243.CrossRefGoogle Scholar
12Binding, P. A. and Huang, Y. X.. The principal eigencurve for the p-Laplacian. Diff. Int. Equ. (to appear).Google Scholar
13Binding, P. A. and Huang, Y. X.. Bifurcation from eigencurves for the p-Laplacian. Diff. Int. Equ. (to appear).Google Scholar
14Binding, P. A. and Volkmer, H.. On the geometry of degree conditions for multiparameter oscillation theorems. Proc. Edinburgh Math. Soc. 35 (1992), 337348.CrossRefGoogle Scholar
15Cantrell, R. S.. On coupled multiparameter nonlinear elliptic systems. Trans. Amer. Math. Soc. 294 (1986), 263285.Google Scholar
16Pino, M. Del and Manásevich, R. F.. Global bifurcation from the eigenvalues of the p-Laplacian. J. Differential Equations 92 (1991), 226251.Google Scholar
17Gilbarg, D. and Trudinger, N. S.. Elliptic Partial Differential Equations of Second Order, 2nd edn (New York: Springer, 1983).Google Scholar
18Guedda, M. and Veron, L.. Bifurcation phenomena associated to the p-Laplace operator. Trans. Amer. Math. Soc. 310 (1988), 419431.Google Scholar
19Kawohl, B.. On a family of torsional creep problems. J. Reine Angew. Math. 410 (1990), 122.Google Scholar
20Pélissier, M.-C. and Reynaud, M. L.. Étude d'un modèle mathématique d'écoulement de glacier. C. R. Acad. Sci. Paris Sér. 1 Math. 279 (1974), 531534.Google Scholar
21Richardson, R. G. D.. Theorems of oscillation for two linear differential equations of the second order with two parameters. Trans. Amer. Math. Soc. 13 (1912), 2234.CrossRefGoogle Scholar
22Showalter, R. E. and Walkington, N. J.. Diffusion of fluid in a fissured medium with microstructure (preprint).Google Scholar
23Szulkin, A.. Ljusternik–Schnirelmann theory on C1-manifolds. Ann. Inst. H. Poincaré, Anal. Nonlineaire 5(1988), 119139.Google Scholar
24Volkmer, H.. Multiparameter Eigenvalue Problems and Expansion Theorems, Lecture Notes in Mathematics 1356 (Berlin: Springer, 1988).CrossRefGoogle Scholar