Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T19:10:26.910Z Has data issue: false hasContentIssue false

Lie algebras whose maximal subalgebras are modular

Published online by Cambridge University Press:  14 November 2011

V. R. Varea
Affiliation:
Department of Algebra, University of Zaragoza, Spain

Synopsis

A subalgebra M of a Lie algebra L is called modular in L if M is a modular element in the lattice of the subalgebras of L. Our aim is to study the finite-dimensional Lie algebras all of whose maximal subalgebras are modular. We characterize these algebras over any field of characteristic zero.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amayo, R. K.. Quasi-ideals of Lie algebras I, II. Proc. London Math. Soc. 33 (1976), 2864.CrossRefGoogle Scholar
2Amayo, R. K. and Schwarz, J.. Modularity in Lie algebras. Hiroshima Math. J. 10 (1980), 311322.CrossRefGoogle Scholar
3Barnes, D. W.. On cohomology of solvable Lie algebras. Math. Z. 101 (1967), 343349.CrossRefGoogle Scholar
4Gein, A. G.. Semi-modular Lie algebras. Sibirsk. Mat. Z. 17 (1976), 243248 (translated in Siberian Math. J. 17 (1976), 243–8).Google Scholar
5Kolman, B.. Semi-modular Lie algebras. J. Sci. Hiroshima Univ. Ser. A-l 29 (1965), 149163.Google Scholar
6Schmidt, R.. Endliche Gruppen mit vielen modularen Untergruppen. Abh. Math. Sem. Univ. Hamburg, 34 (19691970), 115125.CrossRefGoogle Scholar
7Stizinger, E. L.. Frattini subalgebras of a class of solvable Lie algebras. Pacific J. Math. 34 (1970), 177182.CrossRefGoogle Scholar
8Towers, D. A.. A Frattini Theory for Algebras. Proc. London Math. Soc. 27 (1973), 440462.CrossRefGoogle Scholar
9Towers, D. A.. Elementary Lie algebras. J. London Math. Soc. 7 (1973), 295302.CrossRefGoogle Scholar
10Towers, D. A.. On complemented Lie algebras. J. London Math. Soc. 22 (1980), nl, 6365.CrossRefGoogle Scholar
11Venzke, P.. Finite groups whose maximal subgroups are modular. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 828832.Google Scholar