Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T23:15:10.037Z Has data issue: false hasContentIssue false

Is elasticity the proper asymptotic theory for materials with small viscosity and capillarity?

Published online by Cambridge University Press:  14 November 2011

Jose L. Boldrini
Affiliation:
UNICAMP-IMECC CP 1170 13100-Campinas, SP, Brazil

Synopsis

We consider the equations for the isothermal motion of a one-dimensional unbounded body composed of a material with viscosity and capillarity. Using a technique derived from the theory of compensated compactness, we find conditions which guarantee that, as viscosity and capillarity approach zero, the solutions to these equations converge to a solution to the corresponding equations in elasticity.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Boldrini, J. L.. Asymptotic behaviour of travelling wave solutions of the equations for the flow of a fluid with small viscosity and capillarity (to appear).Google Scholar
2Chueh, K. N., Conley, C. C. and Smoller, J. A.. Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26 (1977), 372393.Google Scholar
3DiPerna, R. J.. Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82 (1983), 2770.Google Scholar
4Hagan, R. and Slemrod, M.. The viscosity-capillarity criterion for shocks and phase transitions. Arch. Rational Mech. Anal. 83 (1983) 333361.Google Scholar
5Korteweg, D. J.. Sur la forme que prennent les equations du mouvement des fluids si l'on tient compte des forces capillaires par des variations de densité. Arch. Neerlandaises de Sciences Exactes et Naturelles, Series II 6 (1901), 124.Google Scholar
6Lax, P. D.. Shock waves and entropy. In Contributions to Nonlinear Functional Analysis (ed. Zarantonello, E. A.), pp. 603634 (London: Academic Press, 1971).Google Scholar
7Murat, F.. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Math. 5 (1978), 489507.Google Scholar
8Murat, F.. Compacité par compensation: condition nécéssaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa 8 (1981), 69102Google Scholar
9Murat, F.. L'injection du cone positif de H −l dans W −1,q est compacte pour tout q <2. J. Math. Pures Appl. 60 (1981), 309322.Google Scholar
10Schonbek, M. E.. Convergence of solutions to nonlinear dispersive equations. Comm. Partial Differential Equations 7 (1982), 9591000.Google Scholar
11Slemrod, M.. Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 81 (1983), 301315.Google Scholar
12Slemrod, M.. Lax–Friedrichs and the viscosity-capillarity criterion. Proc. of U. W. Va Conference on Physical Partial Differential Equations, July 1983 (to appear).Google Scholar
13Tartar, L.. Compensated compactness and applications to partial differential equations. In Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, Vol. IV. Research Notes in Mathematics 39 (ed. Knops, R. J.), pp. 177 (London: Pitman, 1979).Google Scholar
14Tartar, L.. Une nouvelle method de résolution d'equations aux derivées partielles nonlinéares. In Lecture Notes in Mathematics 665, pp. 228241 (Berlin: Springer, 1977).Google Scholar
15Tartar, L.. The compensated compactness method applied to systems of conservation laws. In Systems of Nonlinear Partial Differential Equations (ed. Ball, J. M.), pp. 263285. Proceedings of the NATO ASI Series, Series C, Mathematical and Physical Sciences 111 (1983).Google Scholar
16Waals, J. D. van der. Theorie thermodynamic de la capillarité dans l'hypothese d'une variation continue de densité. Arch. Neerlandaises de Sciences Exactes et Naturelles 28 (1895), 121209.Google Scholar