Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T20:01:24.850Z Has data issue: false hasContentIssue false

Hopf bifurcation at multiple eigenvalues with zero eigenvalue

Published online by Cambridge University Press:  14 November 2011

J. López-Gómez
Affiliation:
Departamento de Ecuaciones Funcionales, Universidad Complutense de Madrid, 28040 Madrid, Spain

Synopsis

We give local results related to Hopf bifurcation for parabolic equations. The linear part about the equilibrium point can have zero eigenvalues. In our results the information about the perturbation is essential and it is possible to obtain bifurcation even if some ‘i’ or zero remains on the imaginary axis for all values of the parameter.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alexander, J. C. and Yorke, J. A., Global bifurcation of periodic orbits. Amer. J. Math. 100 (1978), 263292.CrossRefGoogle Scholar
2Buchner, M., Marsden, J. and Schecter, S.. Applications of the blowing-up construction and algebraic geometry to bifurcation problems. J. Differential Equations 48 (1983), 404433.CrossRefGoogle Scholar
3Chow, S. N. and Mallet-Paret, J.. The Fuller index and global Hopf bifurcation. J. Differential Equations 29 (1978), 6685.CrossRefGoogle Scholar
4Chow, S. N., Mallet-Paret, J. and Yorke, J. A., Global Hopf bifurcation from a multiple eigenvalue. Nonlinear Anal. T.M.A. 2 (1978), 753763.CrossRefGoogle Scholar
5Crandall, M. G. and Rabinowitz, P. H.. The Hopf bifurcation theorem in infinite dimensions. Arch. Rational Mech. Anal. 67 (1978), 5372.CrossRefGoogle Scholar
6Hale, J. K., Ordinary Differential Equations (New York: Wiley, 1969).Google Scholar
7Henry, D., Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840 (New York: Springer, 1981).Google Scholar
8Hoyle, S. L., Local solutions manifolds for nonlinear equations. Nonlinear Anal. T.M.A. 4 (1980), 283295.CrossRefGoogle Scholar
9Hoyle, S. L.. Hopf bifurcation for ordinary differential equations with a zero eigenvalue. J. Math. Anal. Appl. 74 (1980), 212232.CrossRefGoogle Scholar
10Ize, J.. An obstruction approach to multiparameter Hopf bifurcation. Lecture Notes in Mathematics 1017, 212232. Equadiff 82 (Berlin: Springer, 1983).Google Scholar
11Kielhöfer, H. Hopf bifurcation at multiple eigenvalues. Arch. Rational Mech. Anal. 69 (1979), 5383.CrossRefGoogle Scholar
12López-Gómez, J.. Casos críticos de bifurcación de Hopf con autovalores múltiples (Ph.D. Thesis, Universidad Complutense de Madrid, Madrid 1984).Google Scholar
13Marsden, J.. Qualitative methods in bifurcation theory. Bull. Amer. Math. Soc. 84 (1978), 11251148.CrossRefGoogle Scholar
14Taliaferro, S.. Stability of solutions bifurcating from multiple eigenvalues. J. Funct. Anal. 44 (1981), 2449.CrossRefGoogle Scholar