Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T01:29:55.344Z Has data issue: false hasContentIssue false

Homogenisation of parametrised families of hyperbolic problems

Published online by Cambridge University Press:  14 November 2011

Y. Amirat
Affiliation:
Laboratoire d'Analyse Numérique, Université Claude Bernard-Lyon 1, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
K. Hamdache
Affiliation:
CNRS-ENSTA/GHN, Centre de l'Yvette, chemin de la Hunière, F-91120 Palaiseau, France
A. Ziani
Affiliation:
Département de Mathématiques, Université de Nantes, 2 rue de la Houssinière, F-44072 Nantes cedex 03, France

Synopsis

This paper is concerned with homogenisation processes for parametrised families of transport equations in ℝn symmetric hyperbolic systems in several space dimensions and anisotropic wave equations. The main tools for carrying out the homogenisation are the Young measures and Radon transform combined with the integral representation of holomorphic functions of Nevanlinna-Pick's type.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ahiezer, N. I and Krein, M. I. Some Questions in the Theory of Moments, Translations of Mathematical Monographs 2 (Providence, R.I.: American Mathematical Society, 1962).CrossRefGoogle Scholar
2Amirat, Y., Hamdache, K. and Ziani, A.. Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux. Ann. Inst. H. Poincaré, Anal. Non Linéaire 6(5) (1989) 397417.CrossRefGoogle Scholar
3Amirat, Y., Hamdache, K. and Ziani, A.. Formulation cinétique d'une équation de transport à mémoire (Rapport 98, Equipe d'Analyse Numérique Lyon Saint-Etienne, Mars 1990) Comm. Partial Differential Equations (to appear).Google Scholar
4Amirat, Y., Hamdache, K. and Ziani, A.. Étude d'une équation de transport à mémoire. C. R. Acad. Sci. Paris, Sér. I Math. 311 (1990) 685688.Google Scholar
5Amirat, Y., Hamdache, K. and Ziani, A.. Some results on homogenization of convection-diffusion equations. Arch. Rational Mech. Anal. 114 (1991), 155178.Google Scholar
6Amirat, Y., Hamdache, K. and Ziani, A.. Comportement limite de modèles d'équations de convection-diffusion dégénérées à coefficients oscillants. C. R. Acad. Sci. Paris, Sér. I Math. 310 (1990), 765768.Google Scholar
7Amirat, Y., Hamdache, K. and Ziani, A.. Homogénéisation par décomposition en fréquences d'une équation de transport dans ℝn. C. R. Acad. Sci. Paris, Sér. I Math. 312 (1991), 3740.Google Scholar
8Amirat, Y., Hamdache, K. and Ziani, A.. Non-local homogenization for some wave equations. (Rapport 117, Equipe d'Analyse Numérique Lyon Saint-Etienne, Avril 1991.)Google Scholar
9Artola, M. and Cessenat, M.. Rapport CEA (to appear).Google Scholar
10Avellaneda, M. and Majda, A. J.. Homogenization and renormalization of multiple-scattering expansions for Green functions in turbulent transport. In Proceedings of ICTP, Trieste, 1990.CrossRefGoogle Scholar
11Avellaneda, M. and Majda, A. J.. On the long-time, large distance, renormalized diffusion for mean-field turbulent transport (preprint 1990).Google Scholar
12Bakhvalov, N. S. and Eglit, M.. Processes in periodic media not described in terms of averaged characteristics (in Russian). Dokl Akad. Nauk U.S.S.R. 268(4) (1983), 836840.Google Scholar
13Bakhvalov, N. S. and Panasenko, G. P.. Homogenization: Averaging processes in periodic media (Dordrecht: Klumer Acad. Publ., 1989).Google Scholar
14Bensoussan, A., Lions, J. L. and Papanicolaou, G. C.. Asymptotic Analysis for Periodic Structures (Amsterdam: North-Holland, 1978).Google Scholar
15Bergman, D. J.. Bulk physical properties of composite media. In Les méthodes d'homogénéisation: Théorie et Applications en Physique, Collection E.D.F. 57, pp. 1128 (Eyrolles: Ecole d'été Analyse numerique, 1985).Google Scholar
16Brenner, H.. Dispersion resulting from flow through spatially periodic porous media. Philos. Trans. Roy. Soc. London 297 (1980), 81133.Google Scholar
17Colombini, F. and Spagnolo, S.. On the convergence of solutions of hyperbolic equations. Comm. Partial Differential Equations 3 (1978), 77103.Google Scholar
18De Giorgi, E. and Spagnolo, S.. Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine. Boll. Un. Mat. ltal. 4–8 (1973), 391411.Google Scholar
19DiPerna, R. J. and Majda, A. J.. Oscillations and concentration in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108 (1987), 667689.Google Scholar
20Donoghue, W. F.. Monotone Matrix Functions and Analytic Continuation (Berlin: Springer, 1974).CrossRefGoogle Scholar
21Fenchenko, V. N. and Ya. Khrouslov, E.. Asymptotic solution of differential equations with strongly oscillating matrix coefficients which does not satisfy the condition of uniform boundedness. Dokl. Acad. Nauk Ukrain. SSR Ser A 4 (1981), 2327.Google Scholar
22Gel'fand, I. M., Graev, M. I. and Ya. Vilenkin, N.. Generalized Functions 5 (New York: Academic Press, 1966).Google Scholar
23Golden, K. and Papanicolaou, G. C.. Bounds for effective parameters of heterogeneous media by analytic continuation. Comm. Math. Phys. 90 (1983), 473491.Google Scholar
24Helgason, S.. The Radon Transform, Progress in Mathematics 5 (Boston: Birkhäuser, 1980).CrossRefGoogle Scholar
25Koch, D. L. and Brady, J. F.. A non-local description of advection diffusion with application to dispersion in porous media. J. Fluid Mech. 180 (1987), 387403.Google Scholar
26Lions, J. L.. Homogénéisation non locale. In Proceeding of the international meeting on recent methods in non linear analysis, eds De Giorgi, E., Magenes, E. and Mosco, U., pp. 189203 (Bologna: Pitagora Editrice, 1979).Google Scholar
27Lions, P. L., Papanicolaou, G. C. and Varadhan, S. R. S.. Homogenization of Hamilton-Jacobi equations (preprint).Google Scholar
28McLaughlin, D. W., Papanicolaou, G. C. and Tartar, L.. Weak limits of semilinear hyperbolic systems with oscillating data, Lecture Notes in Physics 230, pp. 277289 (Berlin: Springer, 1985).Google Scholar
29Marchenko, V. A. and Ya. Khrouslov, E.. Boundary Value Problems in domains with granuled boundaries (Kiev: Nauka-Dumka, 1974, in Russian).Google Scholar
30Mascarenhas, M. L.. A linear homogenization problem with time dependent coefficient. Trans. Amer. Math. Soc. 281 (1984), 179195.CrossRefGoogle Scholar
31Milton, G. W.. Bounds on the complex permittivity of a two-component composite material. J. Appl. Phys. 52 (1981), 52865293.Google Scholar
32Murat, F.. H-convergence (Alger: Séminaire Faculté des Sciences, 1978).Google Scholar
33Renardy, M., Hrusa, J. A. and Nohel, W. J.. Mathematical Problems in Viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics 35 (Harlow: Longman, 1987).Google Scholar
34Sanchez-Hubert, J. and Sanchez-Palencia, E.. Sur certains problèmes physiques d'homogénéisation donnant lieu à des phénomènes de relaxation. C. R. Acad. Sci. Paris, Sér. A 286 (1978), 903906.Google Scholar
35Sanchez-Palencia, E.. Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics 127 (Berlin: Springer, 1980).Google Scholar
36Sanchez-Palencia, E.. Méthodes d'homogénéisation pour l'étude de matériaux hétérogènes: phénomène de mémoire. Rend. Sem. Mat. Univ. Politec. Torino 36 (1978), 1525.Google Scholar
37Shvidler, M. I.. Dispersion of a filtration stream in a medium with random inhomogeneities. Soviet Phys. Dokl. 20(3) (1975), 171173.Google Scholar
38Shvidler, M. I.. Averaging transfer equations in porous media with random inhomogeneities. Transl. Isz. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza 1 (1985), 5965.Google Scholar
39Shvidler, M. I.. Conditional averaging of the equations of flow in random composite porous media. Transl. Isv. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza 1 (1987), 7581.Google Scholar
40Tartar, L.. Problèmes d'homogénéisation dans les équations aux dérivées partielles. (College de France: Cours Peccot, 1977; partially written in [32]).Google Scholar
41Tartar, L.. Non-local effects induced by Homogenization. In Essays of mathematical analysis in honour of E. De Giorgi, pp. 925938 (Boston: Birkhäuser, 1989).Google Scholar
42Tartar, L.. Remarks on homogenization. In Homogenization and Effective Moduli of Materials and Media, eds Ericksen, J. L., Kinderlehrer, D., Kohn, R. V. and Lions, J. L., IMA Vol. in Math. and its applications 1, pp 228246 (Berlin: Springer 1986).CrossRefGoogle Scholar
43Tartar, L.. Compensated compactness and applications to P.D.E. In Research Notes in Math., Non Linear Analysis and Mechanics, Heriot-Watt Symposium 4-39, ed. Knops, R. J., pp. 136212 (London: Pitman, 1979).Google Scholar
44Tartar, L., H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 193230.Google Scholar
45Zhikov, V. V., Kozlov, S. M., Olenik, O. A. and Ngoan, K. T.. Averaging and G-convergence of differential operators. Russian Math. Surveys 34–5 (1979), 69147.Google Scholar