Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T19:13:03.771Z Has data issue: false hasContentIssue false

The Hilbert boundary value problem for nonlinear elliptic systems

Published online by Cambridge University Press:  14 November 2011

Heinrich Begehr
Affiliation:
Freie Universität Berlin, I. Mathematisches Institut, Hüttenweg 9, 1000 Berlin 33, Germany
George C. Hsiao
Affiliation:
Department of Mathematics, University of Delaware, 501 Kirkbridge Office Building, Newark, Delaware 19711, U.S.A.

Synopsis

The Hilbert boundary value problem for a first order nonlinear elliptic system in the plane with linear boundary conditions of nonnegative index is (under suitable side conditions uniquely) solved by use of the Newton imbedding method. This constructive method is based on an a priori estimate which arises from an integral representation formula for C1-functions first developed by Haack and Wendland. The approximation procedure yields an error estimate too.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ahlfors, L.. Lectures on quasiconformal mappings (Princeton: Van Nostrand, 1966).Google Scholar
2Begehr, H.. Boundary value problems for analytic and generalized analytic functions. To appear in Methods, Tendencies and Applications of Complex Analysis, ed. Lanckau, E. and Tutschke, W. (Berlin: Akademie-Verlag).Google Scholar
3Begehr, H.. Boundary value problems for systems with Cauchy-Riemannian main part. 5th Roumanian-Finnish Seminar on Complex analysis. Lecture Notes in Mathematics, to appear.Google Scholar
4Begehr, H. and Gilbert, R. P.. Über das Randwert-Normproblem für ein nichtlineares elliptisches System. Lecture Notes in Mathematics 561, 112121 (Berlin: Springer, 1976).Google Scholar
5Begehr, H. and Gilbert, R. P.. Das Randwert-Normproblem für ein fastlineares elliptisches System und eine Anwendung. Ann. Acad. Sci. Fenn. Ser. AI 3 (1977), 179184.Google Scholar
6Begehr, H. and Gilbert, R. P.. Randwertaufgaben ganzzahliger Charakteristik für verallgemeinerte hyperanalytische Funktionen. Applicable Anal. 6 (1977), 189205.CrossRefGoogle Scholar
7Begehr, H. and Gilbert, R. P.. On Riemann boundary value problems for certain linear elliptic systems in the plane. J. Differential Equations 32 (1979), 114.CrossRefGoogle Scholar
8Begehr, H. and Hile, G. N.. Nonlinear Riemann boundary value problems for a nonlinear elliptic system in the plane. Math. Z. 179 (1982), 241261.CrossRefGoogle Scholar
9Begehr, H. and Hile, G. N.. Riemann boundary value problems for nonlinear elliptic systems. Complex Variables Theory and Appl. 1 (in press).CrossRefGoogle Scholar
10Begehr, H. and Hsiao, G. C.. On nonlinear boundary value problems for an elliptic system in the plane. Lecture Notes in Mathematics 846, 5563 (Berlin: Springer, 1981).Google Scholar
11Begehr, H. and Hsiao, G. C.. Nonlinear boundary value problems for a class of elliptic systems. Komplexe Analysis und ihre Anwendung auf partielle Differentialgleichungen, 90102 (Halle-Wittenberg: Martin-Luther-Universität, 1980).Google Scholar
12Begehr, H. and Hsiao, G. C.. Nonlinear boundary value problems of Riemann-Hilbert type. Special session on elliptic systems in the plane. 87th annual meeting FAMS, San Francisco, January 1981. Contemp. Math. 11 (1982), 139153.CrossRefGoogle Scholar
13Begehr, H. and Hsiao, G. C.. A priori estimates for elliptic systems, to be submitted.Google Scholar
14Bers, L. and Nirenberg, L.. On a representation theorem for elliptic systems with discontinuous coefficients and its applications. Conv. Intern. Eq. Lin. Derivate Partiali. Trieste 1954, pp. 111140 (Roma: Cremonense, 1955).Google Scholar
15Bojarski, B.. Generalized solutions of a system of differential equations of the first order of elliptic type with discontinuous coefficients. Mat. Sb. 43 (85) (1957), 451503.Google Scholar
16Bojarski, B. and Iwaniec, T.. Quasiconformal mappings and nonlinear elliptic equations in two variables I-II. Bull. Acad. Polon. Sci. 22 (1974), 473478, 479–484.Google Scholar
17Buchanan, J. and Gilbert, R. P.. The Hilbert problem for hyperanalytic functions. Applicable Anal. 11 (1981), 303323.CrossRefGoogle Scholar
18Courant, R. and Hilbert, D.. Methods of mathematical physics, Vol. II. Partial differential equations (New York: Interscience, 1962).Google Scholar
19Dunford, N. and Schwartz, J. T.. Linear operators, I (3rd print.) (New York: Interscience, 1966).Google Scholar
20Džuraev, A.. Systems of equations of composite type (Moscow: Nauka, 1972) (Russian).Google Scholar
21Gakhov, I. D.. Boundary value problems (Oxford: Pergamon, 1966).CrossRefGoogle Scholar
22Gilbert, R. P.. Nonlinear boundary value problems for elliptic systems in the plane. Proc. Int. Conf. Nonlinear Systems Appl., ed. Lakshmikantham, V., 97124 (New York: Academic Press, 1977).CrossRefGoogle Scholar
23Gilbert, R. P.. Verallgemeinerte hyperanalytische Funktionentheorie. Komplexe Analysis und ihre Andwendungen auf partielle Differentialgleichungen,124145 (Halle-Wittenberg: Martin-Luther-Universität, 1980).Google Scholar
24Haack, W.. Allgemeine Randwertprobleme für Differentialgleichungen vom elliptischen Typus. Math. Nachr. 7 (1952), 130.CrossRefGoogle Scholar
25Haack, W. and Wendland, W.. Vorlesungen über partielle und Pfaffsche Differentialgleichungen (Basel: Birkhäuser Verlag, 1969).CrossRefGoogle Scholar
26Haack, W. and Wendland, W.. Lectures on partial and Pfaffian differential equations (Oxford: Pergamon Press, 1972).Google Scholar
27Hellwig, G.. Das Randwertproblem eines linearen elliptischen Systems. Math. Z. 56 (1952), 388408.CrossRefGoogle Scholar
28Iwaniec, I.. Quasiconformal mapping problem for general nonlinear systems of partial differential equations. Inst. Naz. Aha Mat. Symposia Math. 18 (1976), 501517.Google Scholar
29Lehto, O. and Virtanen, K. I.. Quasikonforme Abbildungen (Berlin: Springer Verlag, 1965).Google Scholar
30Mamourian, A.. General transmission and boundary value problems for first order elliptic equations in multiply-connected plane domains. Demonstratio Math. 12 (1979), 785802.Google Scholar
31Monahov, V. N.. Boundary value problems with free boundaries for elliptic systems (Novocibirsk: Isdatel'ctvo Nauka Sib. Otdelenie, 1977) (Russian).Google Scholar
32Muskhelishvili, N. I.. Singular Integral Equations (Groningen: Noordhoff, 1953).Google Scholar
33Naas, J. and Tutschke, W.. Some probabilistic aspects in partial complex differential equations. Complex analysis and its applications, 409–12 (Moscow: Acad. Nauk. SSSR, 1978).Google Scholar
34Naas, J. and Tutschke, W.. On the error in the approximate solution of boundary value problems of nonlinear first order differential equations in the plane. Applicable Anal. 7 (1978), 239246.Google Scholar
35Tjurikov, E. V.. The nonlinear Riemann-Hilbert boundary value problem for quasilinear elliptic systems. Soviet Math. Dokl. 20 (1979), 863866.Google Scholar
36Tutschke, W.. Die neuen Methoden der komplexen Analysis und ihre Anwendung auf nichtlineare Differentialgleichungssyteme. Sitzungsber. Akad. Wiss. DDR 17 N (1976).Google Scholar
37Tutschke, W.. The Riemann-Hilbert problem for nonlinear systems of differential equations in the plane. Complex analysis and its applications, 537542 (Moscow: Acad. Nauk. SSSR, 1978). (Russian).Google Scholar
38Tutschke, W.. Solutions with prescribed periods on the boundary components for nonlinear elliptic systems of first order in multiply connected domains in the plane. Martin-Luther- Universität Halle, Preprint Nr. 27 (1979), 39.Google Scholar
39Tutschke, W.. Lösung nichtlinearer partieller Differentialgleíchungssyteme erster Ordnung in der Ebene durch Verwendung einer komplexen Normalform. Math. Nachr. 75 (1976), 283298.CrossRefGoogle Scholar
40Vekua, I. N.. Generalized analytic functions (London: Pergamon, 1962).Google Scholar
41Vinogradov, V. S.. On a boundary value problem for linear elliptic systems of differential equations of the first order on the plane. Dokl. Akad. Nauk. SSSR 118 (1958), 10591062 (Russian).Google Scholar
42Vinogradov, V. S.. Über die Beschränktheit der Lösungen von Randwertproblemen für lineare elliptische Systeme erster Ordnung in der Ebene. Dokl. Akad. Nauk. SSSR 121 (1958), 399402 (Russian).Google Scholar
43Vinodgradov, V. S.. Über einige Randwertprobleme für quasilineare elliptische Systeme erster Ordnung in der Ebene. Dokl. Akad. Nauk. SSSR 121 (1958), 579581 (Russian).Google Scholar
44Vinodgradov, V. S.. A certain boundary value problem for an elliptic system of special form. Differencial'nye Uravnenija 7 (1971), 12261234, 1341 (Russian).Google Scholar
45Warowna-Dorau, G.. Application of the method of successive approximations to a nonlinear Hilbert problem in the class of generalized analytic functions. Demonstratio Math. 2 (1970), 101116.Google Scholar
46Wen, Guo-Chun. On Riemann-Hilbert boundary value problem of elliptic systems of linear partial differential equations of the first order. Ada Math. Sinica 15 (1965), 599613 (Chinese).Google Scholar
47Wen, Guo-Chun. On Riemann-Hilbert problem for nonlinear elliptic systems of first order in the plane. Acta Math. Sinica 23 (1980), 244255 (Chinese).Google Scholar
48Wen, Guo-Chun. Modified Dirichlet problem and quasiconformal mappings for nonlinear elliptic systems of first order. Kexue Tongbao 25 (1980), 449453.Google Scholar
49Wen, Guo-Chun. Function-theoretical properties of solutions for nonlinear elliptic complex equations of first order. Hebei Huagong Xueynan Xuebao, Shuxue Zhuanji, (1980), 42–61 (Chinese).Google Scholar
50Wen, Guo-Chun. The continuous differentiable solutions for nonlinear elliptic complex equations of first order. Hebei Huagong Xueynan Xuebao, Shuxue Zhuanji, (1980), 6283 (Chinese).Google Scholar
51Wendland, W.. An integral equation method for generalized analytic functions. Lecture Notes in Mathematics 430, 414452 (Berlin: Springer, 1977).Google Scholar
52Wendland, W.. On the imbedding method for semilinear first order elliptic systems and related finite element methods. Continuation Methods, ed. Wacker, H., 277336 (New York: Academic Press, 1977).Google Scholar
53Wendland, W.. Elliptic systems in the plane (London: Pitman, 1978).Google Scholar
54Wendland, W.. Numerische Methoden bei Randwertproblemen elliptischer Systeme in der Ebene. Komplexe Analysis und ihre Anwendungen auf partielle Differentialgleichungen, 310348 (Halle-Wittenberg: Martin-Luther-Universität, 1980).Google Scholar
55Wolfersdorf, L. v.. Monotonicity methods for a class of first order semilinear elliptic systems. Komplexe Analysis und ihre Anwendungen auf partielle Differentialgleichungen, 369373 (Halle-Wittenberg: Martin-Luther-Universität, 1980).Google Scholar
56Wolska-Bochenek, J.. On some generalized nonlinear problem of the Hilbert type. Zeszyty Nauk. Politech. Warszawskiej 183, Math. 14 (1968), 1532.Google Scholar
57Wolska-Bochenek, J.. A compound nonlinear boundary value problem in the theory of pseudoanalytic functions. Demonstratio Math 4 (1972), 105117.Google Scholar