Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T08:44:18.707Z Has data issue: false hasContentIssue false

Heat invariants for odd-dimensional hemispheres

Published online by Cambridge University Press:  14 November 2011

M. van den Berg
Affiliation:
Department of Mathematics, Heriot–Watt University, Riccarton, Edinburgh EH 14 4AS, U.K.
Peter B. Gilkey
Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403, U.S.A.

Abstract

We compute the heat content asymptotics of odd dimensional hemispheres in closed form.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Berg, M. van den and Davies, E. B.. Heat flow out of regions in Rn. Math. Z. 202 (1989), 463–82.Google Scholar
2Berg, M. van den and Gall, J.-F. Le. Mean curvature and the heat equation. Math. Z 215 (1994), 437–64.CrossRefGoogle Scholar
3Berg, M. van den and Gilkey, P.. Heat content asymptotics of a Riemannian manifold with boundary. J. Fund. Anal. 120 (1994), 4871.Google Scholar
4Berg, M. van den, Gilkey, P. and Desjardins, S.. Functorality and heat content asymptotics for operators of Laplace type. Topol. Methods Nonlinear Anal. 2 (1993), 147–62.CrossRefGoogle Scholar
5Berg, M. van den. Heat equation on a hemisphere. Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 512.Google Scholar
6Titchmarsh, E. C.. The Theory of Functions (Oxford: Oxford University Press, 1979).Google Scholar
7Berg, M. van den and Srisatkunarajah, S.. Heat flow and Brownian motion for a region in R2 with a polygonal boundary. Probab. Theory Related Fields 86 (1990), 4152.Google Scholar