Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T01:30:55.305Z Has data issue: false hasContentIssue false

From sine waves to square waves in delay equations

Published online by Cambridge University Press:  14 November 2011

S.-N. Chow
Affiliation:
Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology, Atlanta, GA 30332-0160, U.S.A.
J. K. Hale
Affiliation:
Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology, Atlanta, GA 30332-0160, U.S.A.
W. Huang
Affiliation:
Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology, Atlanta, GA 30332-0160, U.S.A.

Synopsis

Suppose fλ: ℝ→ℝ, fλ(0) = 0 and the fixed point zero undergoes a generic supercritical period doubling bifurcation at λ = 0. We characterise those small values of ε > 0, λ ∈ ℝ for which there are periodic solutions of period approximately two of the equation

As ε → 0, these solutions approach square waves.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Berre, M. L., Ressayre, E., Tallet, A. and Gibbs, H. M.. High-dimension chaotic attractors of a nonlinear ring cavity. Phys. Rev. Lett. 56 (1986), 274277.CrossRefGoogle Scholar
2Carr, J.. Applications of Centre Manifold Theory. Appl. Math. Sci. 35 (Berlin: Springer, 1981).Google Scholar
3Chow, S.-N. and Huang, W.. Singular perturbation problem for a system of differential differential equations and applications (preprint, 1991).CrossRefGoogle Scholar
4Chow, S.-N. and Mallet-Paret, J.. Singularly perturbed delay differential equations. In Coupled Nonlinear Oscillators, eds. Chandra, J. and Scott, A. (Amsterdam: North Holland, 1983).Google Scholar
5Chow, S.-N. and Wang, D.. Normal forms of bifurcating periodic orbits. Contemp. Math. A. M. S. 56 (1986), 918.CrossRefGoogle Scholar
6Chow, S.-N. and Wang, D.. On the monotonicity of the period function of some second order equations. Casp. Math. 3 (1986), 1425.Google Scholar
7Clemént, Ph., Diekmann, O., Gyllenberg, M., Heijmans, H. J. A. M. and Thieme, H. R.. Perturbation theory for dual semigroups: The sun-reflexive case. Math. Ann. 277 (1987), 709725.CrossRefGoogle Scholar
Time dependent perturbations in the sun-reflexive case. Proc. Roy. Soc. Edinburgh Sect. A 109 (1989), 145172.Google Scholar
8Gibbs, H. M., Hopf, F. A., Kaplan, D. D. L. and Shoemaker, R. L.. Observation of chaos in optical bistability. Phys. Rev. Lett. 46 (1981), 474477.CrossRefGoogle Scholar
9Glass, L. and Mackey, M.. Oscillation and chaos in physiological control systems. Science 191 (1977), 287289.Google Scholar
10Hale, J. K.. Theory of Functional Differential Equations (New York: Springer, 1977).CrossRefGoogle Scholar
11Ikeda, K.. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 30 (1979), 357.CrossRefGoogle Scholar
12Ikeda, K., Daido, H. and Akimoto, O.. Optical turbulence: Chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett. 45 (1980), 709712.CrossRefGoogle Scholar
13Mallet-Paret, J. and Nussbaum, R.. Global continuation and asymptotic behavior for periodic solutions of a differential delay equation. Ann. Mat. Pura Appl. 145 (1986), 33128.CrossRefGoogle Scholar
14Mallet-Paret, J. and Nussbaum, R.. Global continuation and complicated trajectories for periodic solutions for a differential delay equation. Proc. Symp. Pure Math. 45 (1986), Part 2, 155167.CrossRefGoogle Scholar
15Takens, F.. Forced oscillations and bifurcations (Communication 3, Math. Institute, Rijksuniversiteit, Utrecht, 1974).Google Scholar
16Takens, F., Singularities of vector fields, Publ. Inst. Hautes Études Sci. 43 (1974), 47100.CrossRefGoogle Scholar