Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T19:09:18.389Z Has data issue: false hasContentIssue false

A fixed point theorem for α-condensing maps on a sphere*

Published online by Cambridge University Press:  14 November 2011

Paul Massatt
Affiliation:
Department of Mathematics, University of Oklahoma at Norman, U.S.A

Synopsis

This paper shows that if S is a sphere in a Banach space and f: SS is an α-contraction, then f has a fixed point. The paper generalizes a result of R. D. Nussbaum which holds for α-contractions only. The proof uses the Browder nonrepulsive fixed point theorem and is motivated by recent work of M. Martelli and G. D. Cooperman.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Artstein, Z.. On continuous dependence of fixed points of condensing maps. Dynamical Systems, Vol. III, 7375 (New York: Academic Press, 1976).CrossRefGoogle Scholar
2Browder, F. E.. Another generalization of the Schauder fixed point theorem. Duke Math. J. 32 (1965), 399406.Google Scholar
3Cheng, M. F.. On continuity of fixed points of collectively condensing maps. Proc. Amer. Math.Soc. 63 (1977), 175188.CrossRefGoogle Scholar
4Cooperman, G. D.. α-Condensing Maps and Dissipative Systems (Ph.D. thesis, Brown University, June 1978).Google Scholar
5Darbo, G.. Punti uniti in transformazioni a codominio non compatto. Rend. Sem. Mat. Univ. Padova 24 (1955), 8492.Google Scholar
6Fenske, C. C. and Peitgen, H. O.. Repulsive fixed points of multi-valued transformations and the fixed point index. Math. Ann. 218 (1975), 918.CrossRefGoogle Scholar
7Furi, M. and Martelli, M.. A characterization of compact filter-basis in complete metric spaces. Rend. Istit. Mat. Univ. Trieste 2 (1970), 109113.Google Scholar
8Furi, M. and Martelli, M.. On the minimal displacement of points under α-Lipschitz maps innormed spaces. Boll. Un. Mat. Ital. 4 (1974), 791799.Google Scholar
9Furi, M. and Martelli, M.. A Lefschetz type theorem for the minimal displacement of points under maps defined in a class of ANR's. Boll. Un. Mat. Ital. 10 (1974), 174181.Google Scholar
10Furi, M. and Martelli, M.. On α-Lipschitz retractions of the unit closed ball onto its boundary. Atti Accad. Naz. Lincei Rend. Cl. Set Fis. Mat. Natur. 57 (1974), 6165.Google Scholar
11Furi, M., Martelli, M. and Vignoli, A.. Contributions to the spectral theory for nonlinear operators in Banach spaces. Ann. Mat. Pura Appl. (IV) 118 (1978), 229294.CrossRefGoogle Scholar
12Hale, J. K., α-contractions and differential equations. Equations Differéntielles et fonctionelles non lineaires, 1542. (Paris: Hermann, 1973).Google Scholar
13Hale, J. K.. Continuous dependence of fixed points of condensing maps. J. Math. Ann. Appl. 46 (1974), 388394.CrossRefGoogle Scholar
14Hale, J. K.. Theory of Functional Differential Equations., Appl. Math. Sci. 3 (New York:Springer-Verlag, 1977).Google Scholar
15Hale, J. K. and Lopes, O.. Fixed point theorems and dissipative processes. J. Differential Equations 13 (1973), 391402.CrossRefGoogle Scholar
16Kuratowski, C.. Sur les espaces completes. Fund. Math. 15 (1920), 301309.CrossRefGoogle Scholar
17Leggett, R.. Remarks on Set-Contractions and Condensing Maps. Mathematisches Institut Ruhr-Universität D-4630, Bochum, Germany, preprint.Google Scholar
18Martelli, M.. Nonrepulsive Fixed Point Theorems and Applications. Istituto Mat. U. Dini, Firenze, Italia, preprint.Google Scholar
19Massatt, P.. Properties of Condensing Maps and Dissipative Systems (Ph.D. thesis, Brown University, June 1980).CrossRefGoogle Scholar
20Massatt, P.. Some properties of condensing maps. Ann. Mat. Pura Appl. (IV) 125 101115.CrossRefGoogle Scholar
21Massatt, P.. Stability and fixed points of point dissipative systems. J. Differential Equations 40 (1981), 217231.CrossRefGoogle Scholar
22Massatt, P.. Attractivity properties of α-contractions. J. Differential Equations, to appear.Google Scholar
23Massatt, P.. Limiting behavior for strongly damped nonlinear wave equations. J. DifferentialEquations, to appear.Google Scholar
24Nussbaum, R. D.. Some asymptotic fixed point theorems. Trans. Amer. Math. Soc. 174 (1972), 349375.CrossRefGoogle Scholar
25Nussbaum, R. D.. Some fixed point theorems. Bull. Amer. Math. Soc. 77 (1971), 360365.CrossRefGoogle Scholar
26Nussbaum, R. D.. The fixed point index for local condensing maps. Ann. Mat. Pura Appl. 89 (1971), 217258.CrossRefGoogle Scholar
27Nussbaum, R. D.. Degree theory for local condensing maps. J. Math. Anal. Appl. 37 (1972), 741766.CrossRefGoogle Scholar
28Nussbaum, R. D.. Asymptotic fixed point theorems for local condensing maps. Math. Ann. 191 (1971), 181195.CrossRefGoogle Scholar
29Peitgen, H. O.. Asymptotic fixed point theorems and stability. J. Math. Anal. Appl. 47 (1974), 3242.CrossRefGoogle Scholar
30Peitgen, H. O.. Some Applications of the Fixed Point Index in Asymptotic Fixed Point Theory, preprint.Google Scholar
31Sadovskii, B. N.. On a fixed point principle. Funkcional. Anal, i Prilozen. 4 No. 2 (1967), 7476.Google Scholar
32Sadovskii, B. N., Some remarks on condensing operators and measures of noncompactness. TrudyMat. Fac. Voronezh Gos. Univ. No. 1 (1970), 112124.Google Scholar
33Sadovskii, B. N.. Limit compact and condensing operators. Uspehi Mat. Nauk 4 (1972), 81146 = Russian Math. Surveys 27 (1972), 85–146.Google Scholar
34Zabreiko, P. O. and Krasnosel'skii, M. A.. Interation of operators and the fixed point index. Dokl. Akad. Nauk SSSR 196 (1971), 10061009.Google Scholar