Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T22:32:39.730Z Has data issue: false hasContentIssue false

The extreme points of some classes of polynomials

Published online by Cambridge University Press:  14 November 2011

D. A. Brannan
Affiliation:
Mathematics Faculty, Open University, Milton Keynes MK7 6AA, England
J. G. Clunie
Affiliation:
Mathematics Faculty, Open University, Milton Keynes MK7 6AA, England

Synopsis

We study the extreme points of two classes of polynomials of degree at most n:

It turns out that f ∈ Ext if and only if Re f(e) has exactly 2n zeros in [0, 2π). On the other hand, if f∈Hn and 1−|f(e)|2 has 2n zeros in [0, 2π), then either f ∈ Ext Hn or else f(z) = α + βzn where |α|+|β| = l and αβ≠0; if 1−|f(e)|2 has 2m zeros, 2n, then f may or may not belong to Ext Hn.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Carathéodory, C.. Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32 (1911), 193217.CrossRefGoogle Scholar
2Leeuw, K. de and Rudin, W.. Extreme points and extreme problems in H1. Pacific J. Math. 8 (1958), 467485.Google Scholar