Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T01:59:07.884Z Has data issue: false hasContentIssue false

Existence and stability of steady flows of weakly viscoelastic fluids*

Published online by Cambridge University Press:  14 November 2011

Colette Guillopé
Affiliation:
Laboratoire d'Analyse Numérique, Bâtiment 425, Université Paris–Sud and C.N.R.S., 91405 Orsay, France
Jean-Claude Saut
Affiliation:
Laboratoire d'Analyse Numérique, Bâtiment 425, Université Paris–Sud and C.N.R.S., 91405 Orsay, France; Mathématiques, Université Paris–Val de Marne, 94010 Creteil Cedex, France

Synopsis

We consider steady flows of viscoelastic fluids for which the extrastress tensor is given by a differential constitutive equation and is such that the retardation time is large (weakly viscoelastic fluids).

We show the existence of a unique viscoelastic steady flow close to a given Newtonian flow and investigate its linear stability.

As an example, we consider the Bénard problem for viscoelastic fluids and we prove that there exists a nontrivial linearly stable flow of a weakly viscoelastic fluid in a container heated from below.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Astarita, G. and Marrucci, G.. Principles of Non-Newtonian Fluid Mechanics (New York: McGraw Hill, 1974).Google Scholar
2Bardos, C.. Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; Théorèmes d'approximation; Application à l'équation de transport. Ann. Sci. École Norm. Sup. (4) 3 (1970), 185233.CrossRefGoogle Scholar
3Bazin, V.. Contributions à l'analyse numérique d'écoulements de fluides viscoélastiques de type Maxwell dans un canal ondulé (Thèse de doctorat, Université Paris-Sud, 1990).Google Scholar
4Brezis, H.. Analyse fonctionnelle: Théorie et applications (Paris: Masson, 1983).Google Scholar
5Constantin, P. and Foias, C.. Navier–Stokes equations (Chicago: University of Chicago Press, 1988).CrossRefGoogle Scholar
6Constantin, P., Foias, C. and Temam, R.. On the large time Galerkin approximation of the Navier–Stokes equations. SIAM J. Numer. Anal. 21 (1984), 615634.CrossRefGoogle Scholar
7Guillopé, C. and Saut, J.-C.. Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal., Theory, Methods & Appl. 15 (1990), 849869.CrossRefGoogle Scholar
8Iooss, G.. Théorie non linéaire de la stabilité des écoulements laminaires dans le cas de “l'échange des stabilités”. Arch. Rational Mech. Anal. 40 (1971), 166208.CrossRefGoogle Scholar
9Iudovich, V. I.. On the origin of convection. Prikl. Mat. Meh. 30 (1966), 10011005; J. Appl. Math. Mech. 30 (1966), 1193–1199.Google Scholar
10Iudovich, V. I.. Stability of convection flows. Prikl. Mat. Meh. 31 (1967), 272281; J. Appl. Math. Mech. 31 (1967), 294–303.Google Scholar
11Joseph, D. D.. Nonlinear stability of the Boussinesq equations by the method of energy. Arch. Rational Mech. Anal. 22 (1966), 163184.CrossRefGoogle Scholar
12Joseph, D. D.. Stability of fluid motions, I and II (Berlin: Springer, 1976).Google Scholar
13Joseph, D. D.. Fluid dynamics of viscoelastic liquids (Berlin: Springer, 1990).CrossRefGoogle Scholar
14Joseph, D. D., Renardy, M. and Saut, J.-C.. Hyperbolicity and change of type in the flow of viscoelastic fluid. Arch. Rational Mech. Anal. 81 (1983), 5395.Google Scholar
15Kirchgässner, K.. Bifurcation in nonlinear hydrodynamic stability. SIAM Rev. 17 (1975), 652–683.CrossRefGoogle Scholar
16Kolkka, R. W. and Ierley, G. R.. On the convected linear stability of a viscoelastic Oldroyd B fluid heated from below. J. Non-Newtonian Fluid Mech. 25 (1987), 209237.CrossRefGoogle Scholar
17Larson, R. G.. Constitutive equations for polymer melts and solutions (London: Butterworth, 1988).Google Scholar
18Oldroyd, J. G.. On the formulation of rheological equations of state. Proc. Roy. Soc. London Ser. A 200 (1950), 523541.Google Scholar
19Majda, A.. Compressible fluid flow and systems of conservation laws in several space variables (Berlin: Springer, 1984).CrossRefGoogle Scholar
20Pazy, A.. Semigroups of linear operators and applications to partial differential equations (Berlin: Springer, 1983).CrossRefGoogle Scholar
21Prodi, G.. Teoremi di tipo locale per il sistema di Navier–Stokes e stabilità delle soluzioni stazionarie. Rend. Sem. Mat. Univ. Padova 32 (1962), 374397.Google Scholar
22Prüss, J., On the spectrum of & 0 semigroups. Trans. Amer. Math. Soc. 284 (1984), 847857.Google Scholar
23Renardy, M.. Existence of slow steady flows of viscoelastic fluids with differential constitutive equations. Z. Angew. Math. Mech. 65 (1985), 449451.CrossRefGoogle Scholar
24Renardy, M., Hrusa, W. J. and Nohel, J. A.. Mathematical problems in viscoelasticity (Harlow: Longman, 1987).Google Scholar
25Rosenblat, S.. Thermal convection in a viscoelastic liquid. J. Non-Newtonian Fluid Mech. 21 (1986), 201223.CrossRefGoogle Scholar
26Sattinger, D. H.. Topics in stability and bifurcation theory, Lectures Notes in Mathematics 309 (Berlin: Springer, 1973).CrossRefGoogle Scholar
27Temam, R.. The Navier–Stokes equations: Theory and numerical analysis, 2nd ed. (Amsterdam: North-Holland, 1977).Google Scholar