No CrossRef data available.
Article contents
Equidistribution of values of rational functions (mod p)
Published online by Cambridge University Press: 14 November 2011
Extract
Let R1(x),…, Rd(x) be rational functions in Iℚ(x), such that 1, R1(x),…, Rd(x) are linearly independent over Iℚ. For almost all primes p, their mod p reductions, are well-defined rational functions over Fp and are linearly independent over Fp We show that asymptotically the points
are uniformly distributed in [0, l)d.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 125 , Issue 5 , 1995 , pp. 911 - 929
- Copyright
- Copyright © Royal Society of Edinburgh 1995
References
1Davenport, H.. On a principle of Lipschitz. J. London Math. Soc. 26 (1951), 179–83.CrossRefGoogle Scholar
2Deligne, P.. La conjecture de Weil—I. Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307.CrossRefGoogle Scholar
3Dym, H. and McKean, H. P.. Fourier Series and Integrals (New York: Academic Press, 1972).Google Scholar
4Erdös, P.. Some remarks on Diophantine Approximations. J. Indian Math. Soc. 12 (1948), 67–74.Google Scholar
5Hardy, G. H. and Littlewood, J. E.. Some problems of Diophantine approximation: The lattice-points of a right-angled triangle. Proc. London Math. Soc. (2) 20 (1921), 15–36.Google Scholar
6Hardy, G. H. and Littlewood, J. E.. The lattice-points of a right-angled triangle. (Second memoir) Abh. Math. Sem. Univ. Hamburg 1 (1992), 212–49.Google Scholar
10Lang, S. and Weil, A.. Number of points of varieties in finite fields. Amer. J. Math. 76 (1954), 819–27.CrossRefGoogle Scholar
12Weil, A.. On the Riemann hypothesis in function-fields. Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 345–7.CrossRefGoogle ScholarPubMed