Hostname: page-component-669899f699-8p65j Total loading time: 0 Render date: 2025-04-25T02:37:40.739Z Has data issue: false hasContentIssue false

The effect of a perturbation on Brezis-Nirenberg’s problem

Published online by Cambridge University Press:  25 November 2024

Luiz Fernando de Oliveira Faria
Affiliation:
Department of Mathematics, Federal University of Juiz de Fora Campus Universitário, Rua José Lourenço Kelmer, s/n - São Pedro, 36036-900 Juiz de Fora - MG, Brazil ([email protected]) (corresponding author)
Jeferson Camilo Silva
Affiliation:
Department of Mathematics, Federal University of Juiz de Fora Campus Universitário, Rua José Lourenço Kelmer, s/n - São Pedro, 36036-900 Juiz de Fora - MG, Brazil ([email protected])
Pedro Ubilla
Affiliation:
Departamento de Matemáticas y C.C., Universidad de Santiago de Chile Casilla 307, Correo 2, Santiago, Chile ([email protected])

Abstract

In this article, we consider some critical Brézis-Nirenberg problems in dimension $N \geq 3$ that do not have a solution. We prove that a supercritical perturbation can lead to the existence of a positive solution. More precisely, we consider the equation:

\begin{equation*}\left\{\begin{array}{rllll}-\Delta u & = & \lambda u^{q-1} + u^{2^*+ r^\alpha -1} & \mbox{in} & B, \\u & \gt & 0 & \mbox{in} & B, \\u&=&0 & \mbox{on} & \partial B,\\\end{array}\right.\end{equation*}
where $B \subset \mathbb{R}^N$ is a unit ball centred at the origin, $N\geq 3$, $r=\vert x \vert$, $\alpha \in (0,\min\{N/2,N-2\})$, λ is a fixed real parameter and $q\in [2,2^*]$. This class of problems can be interpreted as a perturbation of the classical Brézis–Nirenberg problem by the term rα at the exponent, making the problem supercritical when $r \in (0,1)$. More specifically, we study the effect of this supercritical perturbation on the existence of solutions. In particular, when N = 3, an interesting and unexpected phenomenon occurs. We obtain the existence of solutions for λ in a range where the Brézis–Nirenberg problem has no solution.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ambrosetti, A. and Rabinowitz, P. H.. Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349381.CrossRefGoogle Scholar
Brézis, H. and Nirenberg, L.. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437477.CrossRefGoogle Scholar
Clemente, R., Marcos do Ó, J. A. and Ubilla, P.. On supercritical problems involving the Laplace operator. Proc. Roy. Soc. Edinburgh Sect. 151 (2021), 187201.CrossRefGoogle Scholar
Diening, L., Harjulehto, P., Hästö, P. and Rocircuvzivcka, M.. Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Vol. 2017 (Springer, Heidelberg, 2011).CrossRefGoogle Scholar
do Ó, J. M., Ruf, B. and Ubilla, P.. On supercritical Sobolev type inequalities and related elliptic equations. Calc. Var. Part. Differ. Equ. 55 (2016), .CrossRefGoogle Scholar
Evans, L. C.. Partial differential equations, Graduate Studies in Mathematics, 2nd edn, Vol. 19 (American Mathematical Society, Providence, RI, 2010).Google Scholar
Palais, R. S.. The principle of symmetric criticality. Commun. Math. Phys. 69 (1979), 1930.CrossRefGoogle Scholar
Strauss, W. A.. Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55 (1977), 149162.CrossRefGoogle Scholar
Talenti, G.. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110 (1976), 353372.CrossRefGoogle Scholar
Willem, M.. Minimax theorems, Progress in Nonlinear Differential Equations and Their Applications, Vol. 24 (Birkhäuser Boston, Inc., Boston, MA, 1996).Google Scholar