Published online by Cambridge University Press: 14 November 2011
In this paper we establish Perron and Krein–Rutman-like theorems for an operator mapping a cone into the interior of the cone, by considering the discrete dynamical system for the induced operator on the projective space (= sphere). Existence of a positive eigenvector reduces to showing that the ω-limit set of the induced operator consists of a single equilibrium. A special feature of our approach is that the convexity of the cone is needed only for establishing the non-emptiness of the w-limit set. This allows us in finite dimensions to establish an abstract Perron Theorem for non-convex cones.