Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T10:01:04.694Z Has data issue: false hasContentIssue false

A dual method in the calculation of homogenisation and applications

Published online by Cambridge University Press:  14 November 2011

Tang Qi
Affiliation:
Institute of Mathematics, Fudan University, Shanghai, People's Republic of, China

Synopsis

We give a new method for calculating the Γ-limit functional encountered in the problems of homogenisation. We use the Legendre–Lagrange transform in the convex analysis and regularisation method to obtain the explicit expression of the Γ-limit functional. The result can be applied to some nonlocal function spaces.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bert, C. W.. Prediction of bending rupture strength of nonlinear materials with different behavior in tension and compression. Internat. J. Non-linear Mech. 18 (1983), 353361.CrossRefGoogle Scholar
2Buttazzo, G. and Maso, G. Dal. Γ-limit of integral functional. J. Analyse Math. 37 (1980) 147185.CrossRefGoogle Scholar
3Carbone, P. L. and Sbordone, C.. Some properties of Γ-limit of integral functionals. Ann. Mat. Pura Appl. 2 (1979), 160.CrossRefGoogle Scholar
4Demengel, F. and Qi, Tang. Fonction convexe d'une mesure obtenue par homogenisation. C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 285288.Google Scholar
5Demengel, F. and Qi, Tang. Homogenisation en plasticité. C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 339341.Google Scholar
6Demengel, F. and Temam, R.. Convex function of a measure. Indian J. Math. 33 (1984), 673709.CrossRefGoogle Scholar
7Demengel, F. and Temam, R.. Convex function of a measure, the unbounded case. Actes des Joumees de Fermat 1985 (Amsterdam: North-Holland, 1986).Google Scholar
8Ekeland, I. and Temam, R.. Convex Analysis and Variational Problems (Amsterdam: North-Holland, 1976).Google Scholar
9Giaquinta, M. and Modica, G.. Nonlinear systems of the type of the stationary Navier-Stokes System (to appear).Google Scholar
10Kohn, R. V. and Temam, R.. Dual spaces of stresses and displacements with applications to Hencky's plasticity. Appl. Math. Optim. 10 (1983), 135.CrossRefGoogle Scholar
11Marcellini, P. and Sbordone, C.. Homogenisation of non-uniformly elliptic operators. Applicable Anal. 8 (1978), 101114.CrossRefGoogle Scholar
12Murat, F.. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa 5 (1978), 489507.Google Scholar
13Paris, L.. Étude de la regularité d'un champ de vecteurs à partir de son tenseur de deformation. Sém. Anal. Convexe 12 (1976), 12.112.11.Google Scholar
14Suquet, P.. Une methode dual en homogenisation: Application aux milieux elastique. J. Mec. Théor. Appl. Numero special, (1983), 7998.Google Scholar
15Suquet, P..Local and global aspects in the mathematical theory of plasticity. Problèmes Nonlinéaires Appliqués-Plasticité (Ecoles CEA-INRIA-EDF) 83–84, 147195.Google Scholar
16Qi, Tang. Approximation and existence results in nonisotropic plasticity (to appear).Google Scholar
17Temam, R.. Problèmes Mathematiques en Plasticité (Paris: Gauthier-Villas, 1983).Google Scholar