Article contents
A combinatorial property of finite full transformation semigroups
Published online by Cambridge University Press: 14 November 2011
Synopsis
Let E be the set of idempotents in the semigroup Singn of singular self-maps of N = {1, …, n}. Let α ∊ Singn. Then α ∊ E2 if and only if for every x in im α the set xα−1 either contains x or contains an element of (im α)′.
Write rank α for |im α| and fix α for |{x ∊ N: xa = x}|. Define (x, xα, xα2) to be an admissible α-triple if x ∊ (im α)′, xα3 ≠ xα2. Let comp α (the complexity of α) be the maximum number of disjoint admissible α-triples. Then α ∊ E3 if and only if
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 109 , Issue 3-4 , 1988 , pp. 319 - 328
- Copyright
- Copyright © Royal Society of Edinburgh 1988
References
1Harris, Bernard. A note on the number of idempotents in symmetric semigroups. American Math. Monthly 74 (1967), 1234–1235.Google Scholar
2Harris, Bernard and Schoenfeld, Lowell. The number of idempotent elements in symmetric semigroups. J. Combin. Theory 3 (1967), 122–135.CrossRefGoogle Scholar
3Howie, J. M.. The subsemigroup generated by the idempotents of a full transformation semigroup. J. London Math. Soc. 41 (1966), 707–716.Google Scholar
4Howie, J. M.. Products of idempotents in finite full transformation semigroups. Proc. Roy. Soc. Edinburgh Sect. A 86 (1980), 243–254.Google Scholar
5Howie, J. M.. Some subsemigroups of infinite full transformation semigroups. Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 159–167.Google Scholar
6Howie, J. M.. Products of idempotents in finite full transformation semigroups: some improved bounds. Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 25–35.Google Scholar
7Iwahori, Nobuko. A length formula in a semigroup of mappings. J. Fac. Sci. Univ. Tokyo Sect 1A Math. 24 (1977), 255–260.Google Scholar
8Tainiter, M.. A characterization of idempotents in semigroups. J. Combin. Theory 5 (1968), 370–373.Google Scholar
- 9
- Cited by