Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T01:44:03.503Z Has data issue: false hasContentIssue false

Characterizing homomorphisms and derivations on C*-algebras

Published online by Cambridge University Press:  24 July 2008

J. Alaminos
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain ([email protected]; [email protected]; [email protected])
J. Extremera
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain ([email protected]; [email protected]; [email protected])
A. R. Villena
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain ([email protected]; [email protected]; [email protected])
M. Brešar
Affiliation:
Department of Mathematics, PEF, University of Maribor, Koroška 160, Slovenia ([email protected])

Abstract

The main theorem states that a bounded linear operator $h$ from a unital $C^{\ast}$-algebra $A$ into a unital Banach algebra $B$ must be a homomorphism provided that $h(\bm{1})=\bm{1}$ and the following condition holds: if $x,y,z\in A$ are such that $xy=yz=0$, then $h(x)h(y)h(z)=0$. This theorem covers various known results; in particular it yields Johnson's theorem on local derivations.

Type
Research Article
Copyright
2007 Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)