Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T02:40:16.214Z Has data issue: false hasContentIssue false

A biharmonic problem with constraint involving critical Sobolev exponent

Published online by Cambridge University Press:  12 July 2007

M. Guedda
Affiliation:
Lamfa, CNRS UPRES-A 6119, Université de Picardie Jules Verne, Faculté de Mathématiques et d'Informatique, 33 rue Saint-Leu 80039 Amiens, France
R. Hadiji
Affiliation:
Lamfa, CNRS UPRES-A 6119, Université de Picardie Jules Verne, Faculté de Mathématiques et d'Informatique, 33 rue Saint-Leu 80039 Amiens, France
C. Picard
Affiliation:
Lamfa, CNRS UPRES-A 6119, Université de Picardie Jules Verne, Faculté de Mathématiques et d'Informatique, 33 rue Saint-Leu 80039 Amiens, France

Abstract

We are concerned with the following minimization problems, where Ω ⊂ RN, N > 4, is a smooth bounded domain, qc = 2N/(N − 4), ϕ ∈ C(Ω) ∩ Lqc(Ω) and . We show that, for ϕ ≢ 0, each infimum is achieved. Under suitable conditions on ϕ, we establish the following gap phenomenon, for qqc.

Moreover, we study the limit behaviour of the minimizers, as q goes to qc, in the case ϕ ∈ H(Ω).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)