Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T20:33:37.689Z Has data issue: false hasContentIssue false

Approximation of Young measures by functions and application to a problem of optimal design for plates with variable thickness

Published online by Cambridge University Press:  14 November 2011

E. Bonnetier
Affiliation:
Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaideau cedex, France
C. Conca
Affiliation:
Universidad de Chile, Fac. de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Matemática, Casilla 170/3 Correo 3, Santiago, Chile

Abstract

Given a parametrised measure and a family of continuous functions (φn), we construct a sequence of functions (uk) such that, as k→∞, the functions φn(uk) converge to the corresponding moments of the measure,in the weak * topology. Using the sequence (uk) corresponding to a dense family of continuous functions, a proof of the fundamental theorem for Young measures is given.

We apply these techniques to an optimal design problem for plates with variable thickness. The relaxation of the compliance functional involves three continuous functions of the thickness. We characterise a set of admissible generalised thicknesses, on which the relaxed functional attains its minimum.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ball, J.. A version of the fundamental theorem for Young measures. In PDE's and Continuum Models of Phase Transitions, eds. Rascle, M., Serre, D. and Slemrod, M., Lecture Notes in Physics 344, 207215 (Berlin: Springer, 1989).CrossRefGoogle Scholar
2Bauer, H.. Probability Theory and Elements of Measure Theory, eds. Birnbaum, Z. W. and Lukacs, E. (New York: Academic Press, 1981).Google Scholar
3Berliocchi, H. and Lasry, J. M.. Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973), 129184.CrossRefGoogle Scholar
4Bonnetier, E. and Vogelius, M.. Relaxation of a compliance functional for a plate optimization problem. In Applications of Multiple Scaling in Mechanics, eds. Ciarlet, P. G. and Sanchez-Palencia, E. (Paris: Masson, 1987).Google Scholar
5Castaing, C. and Valadier, M.. Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580(Berlin: Springer, 1977).CrossRefGoogle Scholar
6Cheng, K. T. and Olhoff, N.. An investigation concerning optimal design of solid elastic plates. Int. J. Solids Structures 17 (1981) 305323.CrossRefGoogle Scholar
7Cheng, K. T. and Olhoff, N.. Regularized formulation for optimal design of axisymmetric plates. Int. J. Solids Structures 18 (1982) 153169.Google Scholar
8Chipot, M. and Kinderlehrer, D.. Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103(1988), 237277.CrossRefGoogle Scholar
9Dacorogna, B.. Weak Continuity and Weak Semicontinuity of Nonlinear Functionals, Lecture Notes in Mathematics 922 (Berlin: Springer, 1982).CrossRefGoogle Scholar
10Karlin, S. and Shapley, L. S.. Geometry of moment spaces. Mem. Amer. Math. Soc. 12 (1953), 193.Google Scholar
11Kinderlehrer, D. and Pedregal, P.. Characterization of Young measures generated by gradients. Arch. Rational Mech. Anal. 115 (1991), 329365.CrossRefGoogle Scholar
12Kohn, R. V. and Vogelius, M.. Thin plates with varying thicknesses and their relation to structural optimization. In Homogenization and Effective Moduli of Materials and Media, IMA Vol. Math. Apl. 1, eds. J. Ericksen, L., Kinderlehrer, D., Kohn, R., Lions, J. L., 126149 (Berlin: Springer, 1986).CrossRefGoogle Scholar
13James, R. D. and Kinderlehrer, D.. Theory of diffusionless phase transitions. In PDE's and Continuum Models of Phase Transitions, eds. Rascle, M., Serre, D. and Slemrod, M., Lecture Notes in Physics 344 (Berlin: Springer, 1989).Google Scholar
14McShane, E. J.. Generalized curves. Duke Math. J. 6 (1940), 513536.CrossRefGoogle Scholar
15Di Perna, R.. Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82 (1983), 2770.CrossRefGoogle Scholar
16Reed, M. and Simon, B.. Functional Analysis I (New York: Academic Press, 1980).Google Scholar
17Roberts, A. W. and Varberg, D. E.. Convex Functions (New York: Academic Press, 1973).Google Scholar
18Szegö, G.. Orthogonal Polynomials, American Mathematical Society Colloquium Publications 23 (Providence, RI: American Mathematical Society, 1959).Google Scholar
19Tartar, L.. Compensated compactness and applications to partial differential equations. In Nonlinear Analysis and Mechanics: Heriot Watt Symposium, Vol. IV, ed. Knops, R., Research Notes in Mathematics 39 (London: Pitman, 1979).Google Scholar
20Young, L. C.. Lectures on the Calculus of Variations and Optimal Control Theory (Philadelphia: Chelsea, 1969).Google Scholar