Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-18T13:39:45.018Z Has data issue: false hasContentIssue false

An eigenvalue problem for generalized Laplacian in Orlicz—Sobolev spaces

Published online by Cambridge University Press:  14 November 2011

Vesa Mustonen
Affiliation:
Department of Mathematical Sciences, University of Oulu, FIN 90570, Oulu, Finland ([email protected]
Matti Tienari
Affiliation:
Department of Mathematical Sciences, University of Oulu, FIN 90570, Oulu, [email protected]

Extract

Let m: [ 0, ∞) → [ 0, ∞) be an increasing continuous function with m(t) = 0 if and only if t = 0, m(t) → ∞ as t → ∞ and Ω C ℝN a bounded domain. In this note we show that for every r > 0 there exists a function ur solving the minimization problem

where Moreover, the function ur is a weak solution to the corresponding Euler–Lagrange equation

for some λ > 0. We emphasize that no Δ2-condition is needed for M or M; so the associated functionals are not continuously differentiable, in general.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, R.. Sobolev spaces (New York: Academic, 1975).Google Scholar
2, Adimurthi. Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian. Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV. Ser. 17(3) (1990), 393413.Google Scholar
3Anane, A.. Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris 305 (1987), 725728.Google Scholar
4Appell, J. and Zabrejko, P.. Nonlinear superposition operators (Cambridge University Press, 1990).CrossRefGoogle Scholar
5Donaldson, T. and Trudinger, N. S.. Orlicz–Sobolev spaces and imbedding theorems. J. Functional Analysis 8 (1971), 5275.CrossRefGoogle Scholar
6Drábek, P.. Solvability and bifurcations of nonlinear equations. Pitman Research Notes in Mathematics, vol. 264 (Longman, 1992).Google Scholar
7Drábek, P.. Strongly nonlinear degenerated and singular elliptic problems. Pitman Research Notes in Mathematics, vol. 343, pp. 112146 (Longman, 1996).Google Scholar
8Drábek, P. and Pohozaev, S.. Positive solutions for the p-Laplacian: application of the fibering method. Proc. R. Soc. Edinb. A 127 (1997), 703726.Google Scholar
9Fučik, S., Necas, J., Souček, J. and Souček, S.. Spectral analysis of nonlinear operators. Lecture Notes in Mathematics, vol. 346 (Springer, 1973).Google Scholar
10Gossez, J.-P.. Nonlinear elliptic boundary value prolems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 190 (1974), 163205.CrossRefGoogle Scholar
11Gossez, J.-P.. Orlicz spaces and nonlinear elliptic boundary value problems. Nonlinear Analysis, Function Spaces and Applications, Teubner-Texte zur Mathematik (1979), pp. 5994.Google Scholar
12Gossez, J.-P.. Some approximation properties in Orlicz–Sobolev spaces. Studia Math. 74 (1982), 17–24.Google Scholar
13Gossez, J.-P. and Mustonen, V.. Variational inequalities in Orlicz–Sobolev spaces. Nonlinear Analysis 11 (1987), 379392.Google Scholar
14Krasnosel'skii, M. and Rutickii, J.. Convex functions and Orliczspaces (Groningen: P. Noordhoff, 1961).Google Scholar
15Kufner, A., John, O. and Fučik, S.. Function spaces (Praha: Academia, 1977).Google Scholar
16Lindqvist, P.. On the equation div(| ∇u|p–2u) + λ|u|p–2u = 0. Proc. Am. Math. Soc. 109 (1990), 157164.Google Scholar
17Nehari, Z.. On a class of nonlinear second-order differential equations. Trans. Am. Math. Soc. 95 (1960), 101123.CrossRefGoogle Scholar
18Tienari, M.. A degree theory for a class of mappings of monotone type in Orlicz-Sobolev spaces. Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 97 (1994), 168.Google Scholar
19Zeidler, E.. Nonlinear functional analysis and its applications. III (New York: Springer, 1985).Google Scholar