Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T08:43:12.108Z Has data issue: false hasContentIssue false

6.—Oscillation Theory for Semilinear Schrödinger Equations and Inequalities

Published online by Cambridge University Press:  14 February 2012

E. S. Noussair
Affiliation:
University of New South Wales
C. A. Swanson
Affiliation:
University of British Columbia

Synopsis

Sufficient conditions are derived for every solution of a nonlinear Schrödinger equation (or inequality) to be oscillatory in an exterior domain of En. Such results apply in particular to the n-dimensional Emden-Fowler equation. The method involves oscillatory behaviour of solutions of a nonlinear ordinary differential inequality satisfied by the spherical mean of a positive solution of the Schrödinger equation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Allegretto, W.. Oscillation criteria for fourth order elliptic operators. Boll. Un. Mat. Ital. 3 (1970), 357361.Google Scholar
2Allegretto, W.. Oscillation criteria for quasilinear quations. Canad. J. Math. 26 (1974), 931947.CrossRefGoogle Scholar
3Allegretto, W. and Swanson, C. A.. Oscillation criteria for elliptic systems. Proc. Amer. Math. Soc. 27 (1971), 325330.CrossRefGoogle Scholar
4Atkinson, F. V.. On second order nonlinear oscillations. Pacific J. Math. 5 (1955), 643647.CrossRefGoogle Scholar
5Baker, J. W.. Oscillation theorems for a second order damped nonlinear differential equation. Siam J. Appl. Math. 25 (1973), 3740.CrossRefGoogle Scholar
6Belohorec, S.. Oscilatoricke riesenia istej nelinearnej differencialnej rovnice druheho radu. Mat. Časopis Sloven. Akad. Vied. 11 (1961), 250255.Google Scholar
7Bhatia, N. P.. Some oscillation theorems for second order differential equations. J Math. Anal. Appl. 15 (1966), 442446.CrossRefGoogle Scholar
8Bobisud, L. E.. Oscillation of nonlinear differential equations with small nonlinear damping. Siam J. Appl. Math. 18 (1970), 7476.CrossRefGoogle Scholar
9Bobisud, L. E.. Oscillation of solutions of damped nonlinear equations. Siam J. Appl. Math. 18 (1970), 601606.CrossRefGoogle Scholar
10Coffman, C. V. and Wong, J. S. W.. Oscillation and nonoscillation theorems for second order ordinary differential equations. Funkcial. Ekvac. 15 (1972), 119130.Google Scholar
11Erbe, L.. Oscillation criteria for second order nonlinear differential equations. Ann. Mat. Pura Appl. 94 (1972), 257268.CrossRefGoogle Scholar
12Izyumova, D. V.. On the conditions for the oscillation and nonoscillation of nonlinear second order differential equations. Differencial'nye Uravnenija 2 (1966), 15721586.Google Scholar
13Headley, V. B.. Some oscillation properties of selfadjoint elliptic equations. Proc. Amer. Math. Soc. 25 (1970), 824829.CrossRefGoogle Scholar
14Headley, V. B. and Swanson, C. A.. Oscillation criteria for elliptic equations. Pacific J. Math. 27 (1968), 501506.CrossRefGoogle Scholar
15Kamenev, I. V.. On oscillation of solutions of a nonlinear equation of second order. Moskov. Inst. Elektron. Mašinostroenija-Trudy Miem 5 (1969), 125136 (in Russian).Google Scholar
16Kartsatos, A. G.. On oscillation of solutions of even order nonlinear differential equations. J. Differential Equations 6 (1969), 232237.CrossRefGoogle Scholar
17Kartsatos, A. G. and Onose, H.. On the maintenance of oscillations under the effect of a small nonlinear damping. Bull. Fac. Sci. Ibaraki Univ. Ser. A. 4 (1972), 311.CrossRefGoogle Scholar
18Kiguradze, I. T.. A note on the oscillation of solutions of the equation un+a(t)| u |n sgn u = 0. Časopis Pešt Mat. 92 (1967), 343350 (in Russian).CrossRefGoogle Scholar
19Kreith, K.. Oscillation Theory. Lecture Notes in Mathematics 324 (Berlin: Springer, 1973).Google Scholar
20Kreith, K. and Travis, C. C.. Oscillation criteria for selfadjoint elliptic equations. Pacific J. Math. 41 (1972), 743753.CrossRefGoogle Scholar
21Legatos, G. G. and Kartsatos, A. G.. Further results on the oscillation of solutions of second order equations. Math. Japon. 14 (1968), 6773.Google Scholar
22Moore, R. A.. The behaviour of solutions of a linear differential equation of second order. Pacific J. Math. 5 (1955), 125145.CrossRefGoogle Scholar
23Naito, M.. Oscillation theorems for a damped nonlinear differential equation. Proc. Japan Acad. 50 (1974), 104108.Google Scholar
24Naito, M.. Oscillation criteria for a second order differential equation with a damping term. Hiroshima Math. J. 4 (1974), 285291.CrossRefGoogle Scholar
25Noussair, E. S.. Oscillation theory of elliptic equations of order J. Differential Equations 10 (1971), 100111.CrossRefGoogle Scholar
26Noussair, E. S. and Swanson, C. A.. Oscillation theorems for vector differential equations. Utilitas Math. 1 (1972), 97109.Google Scholar
27Okikiolu, G. O.. Aspects of the Theory of Bounded Integral Operators in Lp-spaces (New York: Academic Press, 1971).Google Scholar
28Onose, H.. Oscillatory properties of ordinary differential equations of arbitrary order. J. Differential Equations 7 (1970), 454458.CrossRefGoogle Scholar
29Opial, Z.. Sur les integrales oscillantes de l'equation differentielle uH+f(t)u = 0. Ann. Polon. Math. 4 (1958), 308313.Google Scholar
30Swanson, C. A.. Remarks on Picone's identity and related identities. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur., Sez. VIII, 11 (1972), 115.Google Scholar
31Travis, C. C.. A note on second order nonlinear oscillation. Math. Japon. 18 (1973), 261264.Google Scholar
32Waltman, P.. An oscillation criterion for a nonlinear second order equation J. Math. Anal. Appl. 19 (1965), 439441.CrossRefGoogle Scholar
33Willett, D.. On the oscillatory behaviour of the solutions of second order linear differential equations. Ann. Polon. Math. 21 (1969), 175194.CrossRefGoogle Scholar
34Wong, J. S. W.. On second order nonlinear oscillation. Funkcial Ekvac. 11 (1969), 207234.Google Scholar