Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T12:40:49.659Z Has data issue: false hasContentIssue false

2.—On Weyl's Function m(λ).*

Published online by Cambridge University Press:  14 February 2012

S. D. Wray
Affiliation:
Department of Mathematics, University of the Witwatersrand

Synopsis

A proof is given of a formula connecting Weyl's function m(λ) with a spectral integral, in the setting of the singular theory of the Sturm-Liouville differential equation. In addition, a relatively short treatment is given of the argument introducing the function. The theory applies to both the limitpoint and limit-circle cases.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hille, E.. Lectures on ordinary differential equations (Reading, Mass: Addison-Wesley, 1969).Google Scholar
2Sears, D. B.. Integral transforms and eigenfunction theory, I. Quart, J. Math. Oxford Ser. 5 (1954), 4758.CrossRefGoogle Scholar
3Titchmarsh, E. C.. Eigenfunction expansions associated with second-order differential equations, I, 2nd Edn. (Oxford: Clarendon Press, 1962).CrossRefGoogle Scholar
4Weyl, H.. Über gewöhnliche Differentialgleichungen mit Singuläritaten und die zugehörigen Entwicklungen wilkürlicher Funktionen. Math. Ann. 68 (1910), 220269.CrossRefGoogle Scholar
5Widder, D. V.. The Laplace transform, 2nd Edn. (Princeton: University Press, 1946).Google Scholar
6Wray, S. D.. Sturm-Liouville and singular theory for second-order differential equations (Adelaide: Flinders Univ. Ph.D. Thesis, 1973).Google Scholar