Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Gilbert, Richard C.
1978.
A class of symmetric ordinary differential operators whose deficiency numbers differ by an integer†.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 82,
Issue. 1-2,
p.
117.
Frentzen, Hilbert
1980.
Limit-point criteria for systems of differential equations.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 85,
Issue. 3-4,
p.
233.
Hinton, Don
and
Shaw, Ken
1982.
Ordinary and Partial Differential Equations.
Vol. 964,
Issue. ,
p.
298.
Frentzen, Hilbert
1982.
A LIMIT-POINT CRITERION FOR REAL POLYNOMIALS IN SYMMETRIC QUASI-DIFFERENTIAL EXPRESSIONS OF ARBITRARY ORDER.
Quaestiones Mathematicae,
Vol. 5,
Issue. 1,
p.
83.
Frentzen, Hilbert
1982.
Equivalence, adjoints and symmetry of quasi-differential expressions with matrix-valued coefficients and polynomials in them.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 92,
Issue. 1-2,
p.
123.
Shaw, J. K.
and
Hinton, D. B.
1982.
Ordinary and Partial Differential Equations.
Vol. 964,
Issue. ,
p.
614.
Hinton, D. B.
and
Shaw, J. K.
1983.
Parameterization of the M(λ) function for a Hamiltonian system of limit circle type.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 93,
Issue. 3-4,
p.
349.
Braaksma, B. L. J.
1984.
Asymptotics and deficiency indices for certain pairs of differential operators.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 97,
Issue. ,
p.
43.
Halvorsen, S. G.
and
Shaw, J. K.
1984.
Spiral motion for components of a Dirac system of limit circle type.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 97,
Issue. ,
p.
97.
Frentzen, Hilbert
1986.
ON J-SYMMETRIC QUASI-DIFFERENTIAL EXPRESSIONS WITH MATRIX-VALUED COEFFICIENTS.
Quaestiones Mathematicae,
Vol. 10,
Issue. 2,
p.
153.
Dijksma, Aad
Langer, Heinz
and
de Snoo, Henk
1988.
Contributions to Operator Theory and its Applications.
p.
37.
Hassi, Seppo
de Snoo, Henk
and
Winkler, Henrik
2000.
Boundary-value problems for two-dimensional canonical systems.
Integral Equations and Operator Theory,
Vol. 36,
Issue. 4,
p.
445.
Lesch, Matthias
and
Malamud, Mark
2003.
On the deficiency indices and self-adjointness of symmetric Hamiltonian systems.
Journal of Differential Equations,
Vol. 189,
Issue. 2,
p.
556.
Allahverdiev, Bilender P.
2003.
Spectral analysis of dissipative Dirac operators with general boundary conditions.
Journal of Mathematical Analysis and Applications,
Vol. 283,
Issue. 1,
p.
287.
Березанский, Юрий Макарович
Berezanskii, Yurii Makarovich
Брусенцев, Александр Григорьевич
Brusentsev, Alexander Grigorievich
Марченко, Владимир Александрович
Marchenko, Vladimir Alexandrovich
Маслов, Клавдий Вениаминович
Maslov, Klavdii Veniaminovich
Пастур, Леонид Андреевич
Pastur, Leonid Andreevich
Островский, Иосиф Владимирович
Ostrovskii, Iosif Vladimirovich
Храбустовский, В И
Khrabustovskii, V I
Хруслов, Евгений Яковлевич
and
Khruslov, Evgenii Yakovlevich
2003.
Федор Семенович Рофе-Бекетов (к 70-летию со дня рождения).
Успехи математических наук,
Vol. 58,
Issue. 4,
p.
173.
Qi, Jiangang
2005.
Non-limit-circle criteria for singular Hamiltonian differential systems.
Journal of Mathematical Analysis and Applications,
Vol. 305,
Issue. 2,
p.
599.
Дюкарев, Юрий Михайлович
and
Dyukarev, Yury Mikhailovich
2006.
О дефектных числах симметрических операторов, порожденных блочными матрицами Якоби.
Математический сборник,
Vol. 197,
Issue. 8,
p.
73.
Брук, Владислав М
and
Bruk, Vladislav M
2007.
Об обратимых сужениях отношений, порожденных дифференциальным выражением и неотрицательной операторной функцией.
Математические заметки,
Vol. 82,
Issue. 5,
p.
652.
Bruk, V. M.
2007.
On invertible contractions of quotients generated by a differential expression and by a nonnegative operator function.
Mathematical Notes,
Vol. 82,
Issue. 5-6,
p.
583.
Clark, Stephen
and
Zemánek, Petr
2010.
On a Weyl–Titchmarsh theory for discrete symplectic systems on a half line.
Applied Mathematics and Computation,
Vol. 217,
Issue. 7,
p.
2952.