Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:03:37.575Z Has data issue: false hasContentIssue false

28 real bitangents: Dedicated to Ian Porteus

Published online by Cambridge University Press:  14 November 2011

W. L. Edge
Affiliation:
Nazareth House, Hillhead, Bonnyrigg, Midlothian EH19 2JF, Scotland, U.K.

Abstract

Although all the coefficients in the equation of a plane algebraic curve may be real numbers, it by no means follows that the equations of all its bitangents are real. But Plücker perceived that this could happen for the 28 bitangents of a nonsingular plane quartic. Where can this be observed in a body of 28 explicit linear equations? This modest note affords an example.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Baker, H. F.. Principles of Geometry VI (Cambridge: Cambridge University Press, 1933).Google Scholar
2Cayley, A.. Educational Times 36 (1881), 64; Papers X, 603.Google Scholar
3Dixon, A. C.. Note on the reduction of a ternary quartic to a symmetrical determinant. Proc. Cambridge Philos. Soc. 11 (1902), 350351.Google Scholar
4Edge, W. L.. Determinantal representations of x 4 + y 4 + z 4. Proc. Cambridge Philos. Soc. 34 (1938), 116.CrossRefGoogle Scholar
5Edge, W. L.. A plane quartic with eight undulations. Proc. Edinburgh Math. Soc. (2) 8 (1950), 147162.CrossRefGoogle Scholar
6Geiser, C. F.. Über die Doppeltangenten einer ebenen Curve vierten Grades. Math. Ann. 1 (1869).CrossRefGoogle Scholar
7Long, Marjorie. On Geiser's method of generating a plane quartic. Proc. London Math. Soc. (2) 9 (1911), 205230.CrossRefGoogle Scholar
8Plücker, J.. Theorie der algebräischen Curven (Bonn, 1839).Google Scholar
9Salmon, G.. A Treatise on the Higher Plane Curves (Dublin, 1852).Google Scholar
10Zeuthen, H. G.. Sur les différentes formes des courbes planes du quatrième ordre. Math. Ann. 7 (1874), 409432.Google Scholar