Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T05:51:45.015Z Has data issue: false hasContentIssue false

27.—Generating Sets for Fuchsian Groups

Published online by Cambridge University Press:  14 February 2012

J. H. H. Chalk
Affiliation:
University of Toronto.
B. G. A. Kelly
Affiliation:
University of Toronto.

Synopsis

For a class of Fuchsian groups, which includes integral automorphs of quadratic forms and unit groups of indefinite quaternion algebras, it is shown that the geometry of a suitably chosen fundamental region leads to explicit bounds for a complete set of generators.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referenced to Literature

Albert, A., 1934.Integral domains of rational generalized quaternion algebras. Bull. Am. Math. Soc., 40, 164176.CrossRefGoogle Scholar
Chalk, J. H. H., 1974.Generators of Fuchsian groups. Tôhoku Math. J., 26, 203218.CrossRefGoogle Scholar
Eichler, M., 1937 Über die Einheiten der Divisionsalgebren. Math. Annln, 114, 637654.CrossRefGoogle Scholar
Ford, L. R., 1951. Automorphic Functions (reprinted from 1929 edition). New York: Chelsea.Google Scholar
Fricke, R. and Klein, F. 1897. Vorlesungen über die Theorie der automorphen Funktionen, I (reprinted by Academic Press, 1965). Teubner Verlag.Google Scholar
Hull, R., 1939.On the units of indefinite quaternion algebras. Am. J. Math., 61, 365374.CrossRefGoogle Scholar
Kelly, B. G. A., 1971. Contributions to the theory of arithmetic groups and to linear sets. Ph.D. Thesis: Univ. Toronto.Google Scholar
Landau, E., 1918. Abschätzung von Charaktersummen, Einheiten und Klassenzahlen. Nachr. Ges.Wiss. Goöttingen, 7997.Google Scholar
Lehner, J., 1964. Discontinuous groups and automorphic functions. Am. Math. Soc. Surv., 8.CrossRefGoogle Scholar
Macbeath, A. M., 1961. Fuchsian Groups. Lecture notes, Queen's College, Dundee.Google Scholar
Magnus, W., 1973. Rational Representations of Fuchsian groups and non-parabolic subgroups of the Modular group. Nachr. Ges. Wiss. Goöttingen, 179189.Google Scholar
Remak, R., 1931. Elementäre Abschätzungen von Fundamentaleinheiten und des Regulators eines algebraischen Zahlkörpers. Reine Angew. Math., 165, 159179.CrossRefGoogle Scholar
Siegel, C. L., 1945. Some remarks on discontinuous groups. Ann. Math., 46, 708718.CrossRefGoogle Scholar
Siegel, C. L.,, 1971. Topics in Complex Function Theory, II. Wiley-Interscience.Google Scholar
Takeuchi, K., 1969. On some discrete subgroups of SL (2, R), J. Fac. Sci., Tokyo Univ. (I), 16, 97100.Google Scholar
Teuji, M., 1951. Theory of Fuchsian Groups, Jap. J. Math., 21, 127.Google Scholar